cdactvm commited on
Commit
2f45a75
·
verified ·
1 Parent(s): 2deb19e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -1
app.py CHANGED
@@ -31,7 +31,7 @@ from waveletDenoise import wavelet_denoise
31
  from scipy.signal import butter, lfilter, wiener
32
 
33
  asr_model = pipeline("automatic-speech-recognition", model="cdactvm/w2v-bert-tamil_new")
34
-
35
  # Function to apply a high-pass filter
36
  def high_pass_filter(audio, sr, cutoff=300):
37
  nyquist = 0.5 * sr
@@ -52,6 +52,101 @@ def wavelet_denoise(audio, wavelet='db1', level=1):
52
  def apply_wiener_filter(audio):
53
  return wiener(audio)
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  # Function to handle speech recognition
56
  def recognize_speech(audio_file):
57
  audio, sr = librosa.load(audio_file, sr=16000)
@@ -61,6 +156,7 @@ def recognize_speech(audio_file):
61
  result = asr_model(denoised_audio)
62
  text_value = result['text']
63
  cleaned_text = text_value.replace("<s>", "")
 
64
  # converted_to_list = convert_to_list(cleaned_text, text_to_list())
65
  # processed_doubles = process_doubles(converted_to_list)
66
  # replaced_words = replace_words(processed_doubles)
 
31
  from scipy.signal import butter, lfilter, wiener
32
 
33
  asr_model = pipeline("automatic-speech-recognition", model="cdactvm/w2v-bert-tamil_new")
34
+ lex=createlex("num_words_ta.txt")
35
  # Function to apply a high-pass filter
36
  def high_pass_filter(audio, sr, cutoff=300):
37
  nyquist = 0.5 * sr
 
52
  def apply_wiener_filter(audio):
53
  return wiener(audio)
54
 
55
+ def createlex(filename):
56
+
57
+
58
+ # Initialize an empty dictionary
59
+ data_dict = {}
60
+
61
+ # Open the file and read it line by line
62
+ with open(filename, "r", encoding="utf-8") as f:
63
+ for line in f:
64
+ # Strip newline characters and split by tab
65
+ key, value = line.strip().split("\t")
66
+ # Add to dictionary
67
+ data_dict[key] = value
68
+ return data_dict
69
+
70
+ def addnum(inlist):
71
+ sum=0
72
+ for num in inlist:
73
+ sum+=int(num)
74
+
75
+ return sum
76
+ from rapidfuzz import process
77
+ def get_val(word, lexicon):
78
+ threshold = 80 # Minimum similarity score
79
+ length_difference = 4
80
+ #length_range = (4, 6) # Acceptable character length range (min, max)
81
+
82
+ # Find the best match above the similarity threshold
83
+ result = process.extractOne(word, lexicon.keys(), score_cutoff=threshold)
84
+ #print (result)
85
+ if result:
86
+ match, score, _ = result
87
+ #print(lexicon[match])
88
+ #return lexicon[match]
89
+ if abs(len(match) - len(word)) <= length_difference:
90
+ #if length_range[0] <= len(match) <= length_range[1]:
91
+ return lexicon[match]
92
+ else:
93
+ return None
94
+ else:
95
+ return None
96
+
97
+ def convert2num(input, lex):
98
+ input += " #" # Add a period for termination
99
+ words = input.split()
100
+ i = 0
101
+ num = 0
102
+ outstr = ""
103
+ digit_end = True
104
+ numlist = []
105
+ addflag = False
106
+
107
+ # Process the words
108
+ while i < len(words):
109
+ #checkwordlist = handleSpecialnum(words[i])
110
+
111
+ # Handle special numbers
112
+ #if len(checkwordlist) == 2:
113
+ # words[i] = checkwordlist[0]
114
+ # words.insert(i + 1, checkwordlist[1]) # Collect new word for later processing
115
+
116
+ # Get numerical value of the word
117
+ numval = get_val(words[i], lex)
118
+ if numval is not None:
119
+ if words[i][-4:] in ('த்து', 'ற்று'):
120
+ addflag = True
121
+ numlist.append(numval)
122
+ else:
123
+ if addflag:
124
+ numlist.append(numval)
125
+ num = addnum(numlist)
126
+ outstr += str(num) + " "
127
+ addflag = False
128
+ numlist = []
129
+ else:
130
+ outstr += " " + str(numval) + " "
131
+ digit_end = False
132
+ else:
133
+ if addflag:
134
+ num = addnum(numlist)
135
+ outstr += str(num) + " " + words[i] + " "
136
+ addflag = False
137
+ numlist = []
138
+ else:
139
+ outstr += words[i] + " "
140
+ if not digit_end:
141
+ digit_end = True
142
+
143
+ # Move to the next word
144
+ i += 1
145
+
146
+ # Final processing
147
+ outstr = outstr.replace('#','') # Remove trailing spaces
148
+ return outstr
149
+
150
  # Function to handle speech recognition
151
  def recognize_speech(audio_file):
152
  audio, sr = librosa.load(audio_file, sr=16000)
 
156
  result = asr_model(denoised_audio)
157
  text_value = result['text']
158
  cleaned_text = text_value.replace("<s>", "")
159
+ cleaned_text=convert2num(cleaned_text,lex)
160
  # converted_to_list = convert_to_list(cleaned_text, text_to_list())
161
  # processed_doubles = process_doubles(converted_to_list)
162
  # replaced_words = replace_words(processed_doubles)