Spaces:
Sleeping
Sleeping
| # import torch | |
| # import torchaudio | |
| # from silero_vad import get_speech_timestamps, read_audio, save_audio | |
| # def apply_silero_vad(audio_file_path): | |
| # """ | |
| # Applies Silero VAD to an audio file and returns the processed audio | |
| # containing only the voiced segments. | |
| # """ | |
| # # Load the Silero VAD model | |
| # model = torch.hub.load('snakers4/silero-vad', 'silero_vad', force_reload=True) | |
| # # Define helper utilities manually | |
| # def read_audio(path, sampling_rate=16000): | |
| # wav, sr = torchaudio.load(path) | |
| # if sr != sampling_rate: | |
| # wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sampling_rate)(wav) | |
| # return wav.squeeze(0) | |
| # def save_audio(path, tensor, sampling_rate=16000): | |
| # torchaudio.save(path, tensor.unsqueeze(0), sampling_rate) | |
| # # Read the audio file | |
| # wav = read_audio(audio_file_path, sampling_rate=16000) | |
| # # Get timestamps for speech segments | |
| # speech_timestamps = get_speech_timestamps(wav, model, sampling_rate=16000) | |
| # # If no speech detected, raise an exception | |
| # if not speech_timestamps: | |
| # raise Exception("No voiced frames detected using Silero VAD.") | |
| # # Combine the voiced segments | |
| # voiced_audio = torch.cat([wav[ts['start']:ts['end']] for ts in speech_timestamps]) | |
| # # Save the processed audio if needed | |
| # save_audio('processed_voiced_audio.wav', voiced_audio, sampling_rate=16000) | |
| # # Convert to numpy bytes for further processing | |
| # return voiced_audio.numpy().tobytes() | |
| # # Example usage | |
| # try: | |
| # processed_audio = apply_silero_vad("path_to_your_audio.wav") | |
| # print("VAD completed successfully!") | |
| # except Exception as e: | |
| # print(f"Error during Silero VAD processing: {e}") | |
| import webrtcvad | |
| import numpy as np | |
| import librosa | |
| def apply_vad(audio, sr, frame_duration=30, aggressiveness=3): | |
| ''' | |
| Voice Activity Detection (VAD): Detects speech in audio. | |
| ''' | |
| vad = webrtcvad.Vad(aggressiveness) | |
| # Resample to 16000 Hz if not already (recommended for better compatibility) | |
| if sr != 16000: | |
| audio = librosa.resample(audio, orig_sr=sr, target_sr=16000) | |
| sr = 16000 | |
| # Convert to 16-bit PCM format expected by webrtcvad | |
| audio_int16 = np.int16(audio * 32767) | |
| # Ensure frame size matches WebRTC's expected lengths | |
| frame_size = int(sr * frame_duration / 1000) | |
| if frame_size % 2 != 0: | |
| frame_size -= 1 # Make sure it's even to avoid processing issues | |
| frames = [audio_int16[i:i + frame_size] for i in range(0, len(audio_int16), frame_size)] | |
| # Filter out non-speech frames | |
| voiced_frames = [] | |
| for frame in frames: | |
| if len(frame) == frame_size and vad.is_speech(frame.tobytes(), sample_rate=sr): | |
| voiced_frames.append(frame) | |
| # Concatenate the voiced frames | |
| voiced_audio = np.concatenate(voiced_frames) | |
| voiced_audio = np.float32(voiced_audio) / 32767 | |
| return voiced_audio |