File size: 6,454 Bytes
aeac508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb36909
 
 
 
aeac508
 
41d7dd9
aeac508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4288e0d
 
 
 
 
 
 
 
 
 
 
 
aeac508
4288e0d
aeac508
4288e0d
 
 
 
aeac508
4288e0d
aeac508
4288e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeac508
4288e0d
 
 
 
 
5d50d2b
4288e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeac508
4288e0d
aeac508
 
 
 
 
 
 
eaab174
d6f3644
 
 
 
 
aeac508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import warnings
warnings.filterwarnings("ignore")

import os
import re
import pywt
import librosa
import webrtcvad
import nbimporter
import torchaudio
import numpy as np
import gradio as gr
import scipy.signal
import soundfile as sf
from scipy.io.wavfile import write
from transformers import pipeline
from transformers import AutoProcessor
from pyctcdecode import build_ctcdecoder
from transformers import Wav2Vec2ProcessorWithLM
from scipy.signal import butter, lfilter, wiener
from text2int import text_to_int
from isNumber import is_number
from Text2List import text_to_list
from convert2list import convert_to_list
from processDoubles import process_doubles
from replaceWords import replace_words
# from applyVad import apply_vad
# from wienerFilter import wiener_filter
# from highPassFilter import high_pass_filter
# from waveletDenoise import wavelet_denoise
from scipy.signal import butter, lfilter, wiener

asr_model = pipeline("automatic-speech-recognition", model="cdactvm/punjabi-wav-vec-bert-90000")


# Function to apply a high-pass filter
def high_pass_filter(audio, sr, cutoff=300):
    nyquist = 0.5 * sr
    normal_cutoff = cutoff / nyquist
    b, a = butter(1, normal_cutoff, btype='high', analog=False)
    filtered_audio = lfilter(b, a, audio)
    return filtered_audio

# Function to apply wavelet denoising
def wavelet_denoise(audio, wavelet='db1', level=1):
    coeffs = pywt.wavedec(audio, wavelet, mode='per')
    sigma = np.median(np.abs(coeffs[-level])) / 0.5
    uthresh = sigma * np.sqrt(2 * np.log(len(audio)))
    coeffs[1:] = [pywt.threshold(i, value=uthresh, mode='soft') for i in coeffs[1:]]
    return pywt.waverec(coeffs, wavelet, mode='per')

# Function to apply a Wiener filter for noise reduction
def apply_wiener_filter(audio):
    return wiener(audio)



# def createlex(filename):
# # Initialize an empty dictionary
#     data_dict = {}

# # Open the file and read it line by line
#     with open(filename, "r", encoding="utf-8") as f:
#         for line in f:
#         # Strip newline characters and split by tab
#             key, value = line.strip().split("\t")
#         # Add to dictionary
#             data_dict[key] = value
#     return data_dict
    
# lex=createlex("num_words_ta.txt")

# def addnum(inlist):
#     sum=0
#     for num in inlist:
#         sum+=int(num)
   
#     return sum
    
# from rapidfuzz import process
# def get_val(word, lexicon):
#     threshold = 80  # Minimum similarity score
#     length_difference = 4
#     #length_range = (4, 6)  # Acceptable character length range (min, max)

#     # Find the best match above the similarity threshold
#     result = process.extractOne(word, lexicon.keys(), score_cutoff=threshold)
#     #print (result)
#     if result:
#         match, score, _ = result
#         #print(lexicon[match])
#         #return lexicon[match]
#         if abs(len(match) - len(word)) <= length_difference:
#         #if length_range[0] <= len(match) <= length_range[1]:
#             return lexicon[match]
#         else:
#             return None
#     else:
#         return None

# def convert2num(input, lex):
#     input += " #"  # Add a period for termination
#     words = input.split()
#     i = 0
#     num = 0
#     outstr = ""
#     digit_end = True
#     numlist = []
#     addflag = False

#     # Process the words
#     while i < len(words):
#         #checkwordlist = handleSpecialnum(words[i])
        
#         # Handle special numbers
#         #if len(checkwordlist) == 2:
#         #    words[i] = checkwordlist[0]
#         #    words.insert(i + 1, checkwordlist[1])  # Collect new word for later processing

#         ## Get numerical value of the word
#         numval = get_val(words[i], lex)
#         if numval is not None:
#             if words[i][-4:] in ('த்து', 'ற்று'):
#                 addflag = True
#                 numlist.append(numval)
#             else:
#                 if addflag:
#                     numlist.append(numval)
#                     num = addnum(numlist)
#                     outstr += str(num) + " "
#                     addflag = False
#                     numlist = []
#                 else:
#                     outstr += " " + str(numval) + " "
#             digit_end = False
#         else:
#             if addflag:
#                 num = addnum(numlist)
#                 outstr += str(num) + " " + words[i] + " "
#                 addflag = False
#                 numlist = []
#             else:
#                 outstr += words[i] + " "
#             if not digit_end:
#                 digit_end = True

#         # Move to the next word
#         i += 1

#     # Final processing
#     outstr = outstr.replace('#','')  # Remove trailing spaces
#     return outstr
    
# # Function to handle speech recognition
def recognize_speech(audio_file):
    audio, sr = librosa.load(audio_file, sr=16000)
    audio = high_pass_filter(audio, sr)
    audio = apply_wiener_filter(audio)
    denoised_audio = wavelet_denoise(audio)
    result = asr_model(denoised_audio)
    text_value = result['text']
    cleaned_text = text_value.replace("[PAD]", "")
    converted_to_list = convert_to_list(cleaned_text, text_to_list())
    processed_doubles = process_doubles(converted_to_list)
    replaced_words = replace_words(processed_doubles)
    converted_text = text_to_int(replaced_words)
    return converted_text

def sel_lng(lng, mic=None, file=None):
    if mic is not None:
        audio = mic
    elif file is not None:
        audio = file
    else:
        return "You must either provide a mic recording or a file"
    
    if lng == "model_1":
        return recognize_speech(audio)
    # elif lng == "model_2":
    #     return transcribe_hindi_new(audio)
    # elif lng== "model_3":
    #     return transcribe_hindi_lm(audio)
    # elif lng== "model_4":
    #     return Noise_cancellation_function(audio)
            
        
demo=gr.Interface(
    fn=sel_lng, 
      
    inputs=[
        gr.Dropdown([
            "model_1"],label="Select Model"),
        gr.Audio(sources=["microphone","upload"], type="filepath"),
    ],
    outputs=[
        "textbox"
    ],
    title="Automatic Speech Recognition",
    description = "Demo for Automatic Speech Recognition. Use microphone to record speech. Please press Record button. Initially it will take some time to load the model. The recognized text will appear in the output textbox",
      ).launch()