File size: 5,495 Bytes
f1b22d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import torch
import librosa
import warnings
import numpy as np
import pandas as pd
import gradio as gr
import librosa.display
from model import EvalNet
from t_model import t_EvalNet
from utils import get_modelist, find_files, embed, MODEL_DIR


TRANSLATE = {
    "chanyin": "Vibrato",  # 颤音
    "boxian": "Plucks",  # 拨弦
    "shanghua": "Upward Portamento",  # 上滑音
    "xiahua": "Downward Portamento",  # 下滑音
    "huazhi/guazou/lianmo/liantuo": "Glissando",  # 花指\刮奏\连抹\连托
    "yaozhi": "Tremolo",  # 摇指
    "dianyin": "Point Note",  # 点音
}
CLASSES = list(TRANSLATE.keys())
TEMP_DIR = "./__pycache__/tmp"
SAMPLE_RATE = 44100
HOP_LENGTH = 512
TIME_LENGTH = 3


def logMel(y, sr=SAMPLE_RATE):
    mel = librosa.feature.melspectrogram(
        y=y,
        sr=sr,
        hop_length=HOP_LENGTH,
        fmin=27.5,
    )
    return librosa.power_to_db(mel, ref=np.max)


def logCqt(y, sr=SAMPLE_RATE):
    cqt = librosa.cqt(
        y,
        sr=sr,
        hop_length=HOP_LENGTH,
        fmin=27.5,
        n_bins=88,
        bins_per_octave=12,
    )
    return ((1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(cqt), ref=np.max)) + 1.0


def logChroma(y, sr=SAMPLE_RATE):
    chroma = librosa.feature.chroma_stft(
        y=y,
        sr=sr,
        hop_length=HOP_LENGTH,
    )
    return (
        (1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(chroma), ref=np.max)
    ) + 1.0


def RoW_norm(data):
    common_sum = 0
    square_sum = 0
    tfle = 0
    for i in range(len(data)):
        tfle += (data[i].sum(-1).sum(0) != 0).astype("float").sum()
        common_sum += data[i].sum(-1).sum(-1)
        square_sum += (data[i] ** 2).sum(-1).sum(-1)

    common_avg = common_sum / tfle
    square_avg = square_sum / tfle
    std = np.sqrt(square_avg - common_avg**2)
    return common_avg, std


def norm(data):
    size = data.shape
    avg, std = RoW_norm(data)
    avg = np.tile(avg.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
    std = np.tile(std.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
    return (data - avg) / std


def chunk_data(f):
    x = []
    xdata = np.transpose(f)
    s = SAMPLE_RATE * TIME_LENGTH // HOP_LENGTH
    length = int(np.ceil((int(len(xdata) / s) + 1) * s))
    app = np.zeros((length - xdata.shape[0], xdata.shape[1]))
    xdata = np.concatenate((xdata, app), 0)
    for i in range(int(length / s)):
        data = xdata[int(i * s) : int(i * s + s)]
        x.append(np.transpose(data[:s, :]))

    return np.array(x)


def load(audio_path: str, converto="mel"):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    spec = eval("log%s(y, sr)" % converto.capitalize())
    x_spec = chunk_data(spec)
    Xtr_spec = np.expand_dims(x_spec, axis=3)
    return list(norm(Xtr_spec))


def infer(audio_path: str, log_name: str):
    if not audio_path:
        return None, "Please input an audio!"

    backbone = "_".join(log_name.split("_")[:-1])
    spec = log_name.split("_")[-1]
    try:
        input = load(audio_path, converto=spec)
        if "vit" in backbone or "swin" in backbone:
            eval_net = t_EvalNet(
                backbone,
                len(TRANSLATE),
                input[0].shape[1],
                weight_path=f"{MODEL_DIR}/{log_name}.pt",
            )

        else:
            eval_net = EvalNet(
                backbone,
                len(TRANSLATE),
                input[0].shape[1],
                weight_path=f"{MODEL_DIR}/{log_name}.pt",
            )

    except Exception as e:
        return None, f"{e}"

    input_size = eval_net.get_input_size()
    embeded_input = embed(input, input_size)
    output = list(eval_net.forward(embeded_input))
    outputs = []
    index = 0
    for y in output:
        preds = list(y.T)
        for pred in preds:
            outputs.append(
                {
                    "Frame": index,
                    "Tech": TRANSLATE[CLASSES[torch.argmax(pred).item()]],
                }
            )
            index += 1

    return os.path.basename(audio_path), pd.DataFrame(outputs)


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    models = get_modelist(assign_model="VGG19_mel")
    examples = []
    example_wavs = find_files()
    for wav in example_wavs:
        examples.append([wav, models[0]])

    with gr.Blocks() as demo:
        gr.Interface(
            fn=infer,
            inputs=[
                gr.Audio(label="Upload audio", type="filepath"),
                gr.Dropdown(choices=models, label="Select a model", value=models[0]),
            ],
            outputs=[
                gr.Textbox(label="Audio filename", show_copy_button=True),
                gr.Dataframe(label="Frame-level guzheng playing technique detection"),
            ],
            examples=examples,
            cache_examples=False,
            flagging_mode="never",
            title="It is suggested that the recording time should not be too long",
        )

        gr.Markdown(
            """
# Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
  author       = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
  title        = {CCMusic: an Open and Diverse Database for Chinese Music Information Retrieval Research},
  month        = {mar},
  year         = {2024},
  publisher    = {HuggingFace},
  version      = {1.2},
  url          = {https://huggingface.co/ccmusic-database}
}
```"""
        )

    demo.launch()