import gradio import numpy import pandas import sentence_transformers import datasets import faiss model = sentence_transformers.SentenceTransformer('allenai-specter') data = datasets.load_dataset("ccm/publications")['train'].to_pandas() dimensionality = len(data['embedding'][0]) index = faiss.IndexFlatL2(dimensionality) vectors = numpy.stack(data['embedding'].to_list(), axis=0) index.add(vectors) def search(query): k=5 query = numpy.expand_dims(model.encode(query), axis=0) _, I = top_five = index.search(query, k) top_five = data.loc[I[0]] search_results = "" for i in range(k): search_results += str(i+1) + ". " search_results += '"' + top_five["bibtex"].values[i]["title"] + '" ' search_results += top_five["bibtex"].values[i]["citation"] if top_five["pub_url"].values[i] is not None: search_results += " [Full Paper](" + top_five["pub_url"].values[i] + ")" search_results += "\n" return search_results with gradio.Blocks() as demo: query = gradio.Textbox(placeholder="Enter search terms...") btn = gradio.Button("Search") results = gradio.Markdown() btn.click(fn=search, inputs=[query], outputs=results) demo.launch(debug=True)