import json import gradio import datasets import numpy import pandas import sentence_transformers import faiss model = sentence_transformers.SentenceTransformer('allenai-specter') full_data = datasets.load_dataset("ccm/publications")['train'].to_pandas() filter = ["\"abstract\": null" in json.dumps(bibdict) for bibdict in full_data['bib_dict'].values] data = full_data[~pandas.Series(filter)] data.reset_index(inplace=True) dimensionality = len(data['embedding'][0]) index = faiss.IndexFlatL2(dimensionality) vectors = numpy.stack(data['embedding'].to_list(), axis=0) index.add(vectors) def search(query, k): query = numpy.expand_dims(model.encode(query), axis=0) _, I = index.search(query, k) top_five = data.loc[I[0]] search_results = "" for i in range(k): search_results += '### ' + top_five["bib_dict"].values[i]["title"] + '\n' search_results += top_five["bib_dict"].values[i]["citation"] if top_five["pub_url"].values[i] is not None: search_results += ", [Paper](" + top_five["pub_url"].values[i] + ")" search_results += "\t\n```\n" search_results += json.dumps(top_five["bibtex"].values[i], indent=4).replace('\\n', '\n').replace('\\t', '\t').strip("\"") search_results += "\t\n```\n" return search_results with gradio.Blocks() as demo: with gradio.Group(): query = gradio.Textbox(placeholder="Enter search terms...", show_label=False, lines=1, max_lines=1) with gradio.Accordion("Settings", open=False): k = gradio.Number(5.0, label="Number of results", precision=0) results = gradio.Markdown() query.change(fn=search, inputs=[query, k], outputs=results) k.change(fn=search, inputs=[query, k], outputs=results) demo.launch(debug=True)