import gradio # for the interface import transformers # to load an LLM import sentence_transformers # to load an embedding model import faiss # to create an index import numpy # to work with vectors import pandas # to work with pandas import json # to work with JSON import datasets # to load the dataset import spaces # for GPU import threading import time # Constants GREETING = "Hi there! I'm an AI agent that answers your questions using a [retrieval-augmented generation]() pipeline that searches over publications abstracts from the Design Research Collective." # Load the dataset and convert to pandas full_data = datasets.load_dataset("ccm/publications")["train"].to_pandas() # Filter out any publications without an abstract filter = [ '"abstract": null' in json.dumps(bibdict) for bibdict in full_data["bib_dict"].values ] data = full_data[~pandas.Series(filter)] data.reset_index(inplace=True) # Create a FAISS index for fast similarity search metric = faiss.METRIC_INNER_PRODUCT vectors = numpy.stack(data["embedding"].tolist(), axis=0) index = faiss.IndexFlatL2(len(data["embedding"][0])) index.metric_type = metric faiss.normalize_L2(vectors) index.train(vectors) index.add(vectors) # Load the model for later use in embeddings model = sentence_transformers.SentenceTransformer("allenai-specter") # Define the search function def search(query: str, k: int) -> tuple[str]: query = numpy.expand_dims(model.encode(query), axis=0) faiss.normalize_L2(query) D, I = index.search(query, k) top_five = data.loc[I[0]] search_results = "You are an AI assistant who delights in helping people" \ + "learn about research from the Design Research Collective. Here are" \ + "several abstracts from really cool, and really relevant, papers:\n\n" references = "\n\n## References\n\n" for i in range(k): search_results += top_five["bib_dict"].values[i]["abstract"] + "\n" references += str(i+1) + ". " + ", ".join([author.split(" ")[-1] for author in top_five["bib_dict"].values[i]["author"].split(" and ")]) + ". (" + str(int(top_five["bib_dict"].values[i]["pub_year"])) + "). [" + top_five["bib_dict"].values[i]["title"] + "]" \ + "(https://scholar.google.com/citations?view_op=view_citation&citation_for_view=" + top_five["author_pub_id"].values[i] + ").\n" search_results += "\nIf these abstract aren't relevant to the followign query, please say that there is not much research in that area. Response to the following query from the perspective of the provided abstracts only:" return search_results, references # Create an LLM pipeline that we can send queries to model_name = "Qwen/Qwen2-7B-Instruct" tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) streamer = transformers.TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) chatmodel = transformers.AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) def preprocess(message: str) -> tuple[str]: """Applies a preprocessing step to the user's message before the LLM receives it""" block_search_results, formatted_search_results = search(message, 5) return block_search_results + message, formatted_search_results def postprocess(response: str, bypass_from_preprocessing: str) -> str: """Applies a postprocessing step to the LLM's response before the user receives it""" return response + bypass_from_preprocessing @spaces.GPU def predict(message: str, history: list[str]) -> str: """This function is responsible for crafting a response""" # Apply preprocessing message, bypass = preprocess(message) # This is some handling that is applied to the history variable to put it in a good format if isinstance(history, list): if len(history) > 0: history = history[-1] history_transformer_format = [ {"role": "assistant" if idx&1 else "user", "content": msg} for idx, msg in enumerate(history) ] + [{"role": "user", "content": message}] # Stream a response from pipe text = tokenizer.apply_chat_template( history_transformer_format, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0") generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=512 ) t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs) t.start() partial_message = "" for new_token in streamer: if new_token != '<': partial_message += new_token time.sleep(0.05) yield partial_message yield partial_message + bypass # Create and run the gradio interface gradio.ChatInterface( predict, examples=[ "Tell me about new research at the intersection of additive manufacturing and machine learning", "What is a physics-informed neural network and what can it be used for?", "What can agent-based models do about climate change?" ], chatbot = gradio.Chatbot( show_label=False, show_copy_button=True, value=[None, GREETING] ), retry_btn = None, undo_btn = None, clear_btn = None, theme = "monochrome", cache_examples = True, fill_height = True, ).launch(debug=True)