ccm commited on
Commit
bd640c9
·
verified ·
1 Parent(s): 92714f7

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +10 -6
main.py CHANGED
@@ -24,12 +24,16 @@ data = full_data[~pandas.Series(filter)]
24
  data.reset_index(inplace=True)
25
 
26
  # Create a FAISS index for fast similarity search
27
- index = faiss.IndexFlatL2(len(data["embedding"][0]))
28
- index.metric_type = faiss.METRIC_INNER_PRODUCT
29
  vectors = numpy.stack(data["embedding"].tolist(), axis=0)
30
- faiss.normalize_L2(vectors)
31
- index.train(vectors)
32
- index.add(vectors)
 
 
 
 
33
 
34
  # Load the model for later use in embeddings
35
  model = sentence_transformers.SentenceTransformer("allenai-specter")
@@ -38,7 +42,7 @@ model = sentence_transformers.SentenceTransformer("allenai-specter")
38
  def search(query: str, k: int):
39
  query = numpy.expand_dims(model.encode(query), axis=0)
40
  faiss.normalize_L2(query)
41
- D, I = index.search(query, k)
42
  top_five = data.loc[I[0]]
43
  search_results = ""
44
 
 
24
  data.reset_index(inplace=True)
25
 
26
  # Create a FAISS index for fast similarity search
27
+ let indices = []
28
+ let metrics = [faiss.METRIC_INNER_PRODUCT]
29
  vectors = numpy.stack(data["embedding"].tolist(), axis=0)
30
+ for metric in metrics:
31
+ index = faiss.IndexFlatL2(len(data["embedding"][0]))
32
+ index.metric_type = metric
33
+ faiss.normalize_L2(vectors)
34
+ index.train(vectors)
35
+ index.add(vectors)
36
+ indices.append(index)
37
 
38
  # Load the model for later use in embeddings
39
  model = sentence_transformers.SentenceTransformer("allenai-specter")
 
42
  def search(query: str, k: int):
43
  query = numpy.expand_dims(model.encode(query), axis=0)
44
  faiss.normalize_L2(query)
45
+ D, I = indices[0].search(query, k)
46
  top_five = data.loc[I[0]]
47
  search_results = ""
48