Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,242 Bytes
c6cda2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio
import numpy
import pandas
import sentence_transformers
import datasets
import faiss
model = sentence_transformers.SentenceTransformer('allenai-specter')
data = datasets.load_dataset("ccm/publications")['train'].to_pandas()
dimensionality = len(data['embedding'][0])
index = faiss.IndexFlatL2(dimensionality)
vectors = numpy.stack(data['embedding'].to_list(), axis=0)
index.add(vectors)
def search(query):
k=5
query = numpy.expand_dims(model.encode(query), axis=0)
_, I = top_five = index.search(query, k)
top_five = data.loc[I[0]]
search_results = ""
for i in range(k):
search_results += str(i+1) + ". "
search_results += '"' + top_five["bibtex"].values[i]["title"] + '" '
search_results += top_five["bibtex"].values[i]["citation"]
if top_five["pub_url"].values[i] is not None:
search_results += " [Full Paper](" + top_five["pub_url"].values[i] + ")"
search_results += "\n"
return search_results
with gradio.Blocks() as demo:
query = gradio.Textbox(placeholder="Enter search terms...")
btn = gradio.Button("Search")
results = gradio.Markdown()
btn.click(fn=search, inputs=[query], outputs=results)
demo.launch(debug=True) |