File size: 7,225 Bytes
3caa7cd
2cdfb26
 
3caa7cd
2cdfb26
3caa7cd
d7a54c3
 
3caa7cd
2ce9b97
3caa7cd
c6cda2e
2494e4f
3caa7cd
 
 
2249b9c
 
3caa7cd
6dbf6d3
541f855
6dbf6d3
 
541f855
 
 
6dbf6d3
7e37bf7
a1a6086
2494e4f
a64dda4
aa7a513
5e710c8
a64dda4
3caa7cd
6dbf6d3
a64dda4
6dbf6d3
6a4b3a2
c6cda2e
24dc567
 
 
 
 
 
 
 
 
 
 
 
a64dda4
d7a54c3
bc256ab
936fa72
 
d7a54c3
936fa72
 
bc256ab
c6cda2e
24dc567
6dbf6d3
24dc567
6dbf6d3
 
 
 
24dc567
6dbf6d3
24dc567
f186297
24dc567
 
c6cda2e
d7a54c3
24dc567
3caa7cd
1157109
 
24dc567
 
 
 
3caa7cd
d7a54c3
 
24dc567
c6cda2e
 
f186297
 
 
 
 
3caa7cd
 
 
 
 
 
 
f186297
 
 
 
 
 
3caa7cd
f186297
3caa7cd
f186297
3caa7cd
f186297
3caa7cd
 
24dc567
 
 
3caa7cd
24dc567
 
d7a54c3
6dbf6d3
 
 
 
 
 
 
 
d7a54c3
 
3caa7cd
8a48a1f
6dbf6d3
 
 
 
 
 
 
 
 
d7a54c3
 
24dc567
d7a54c3
 
 
04fe4c4
 
 
 
d7a54c3
 
30d4d88
 
3caa7cd
30d4d88
648f18a
30d4d88
3caa7cd
30d4d88
 
 
 
 
3caa7cd
30d4d88
aa33df0
30d4d88
 
3c845c1
d7a54c3
 
 
ebc5453
6dbf6d3
 
3caa7cd
e14a8ae
 
 
ff929df
 
1157109
e14a8ae
 
6e12d67
ff929df
06c4e96
3caa7cd
 
 
4928a53
 
 
3caa7cd
e14a8ae
1aae6c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import json  # to work with JSON
import threading  # to allow streaming response
import time  # to pave the deliver of the message

import faiss  # to create a search index
import gradio  # for the interface
import numpy  # to work with vectors
import pandas  # to work with pandas
import sentence_transformers  # to load an embedding model
import spaces  # for GPU
import transformers  # to load an LLM

# Constants
GREETING = (
    "Howdy! I'm an AI agent that uses a [retrieval-augmented generation]("
    "https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about research by the "
    "[Design Research Collective](https://cmudrc.github.io/). And the best part is that I always cite my sources! What"
    " can I tell you about today?"
)
EXAMPLE_QUERIES = [
    "Tell me about new research at the intersection of additive manufacturing and machine learning.",
    "What is a physics-informed neural network and what can it be used for?",
    "What can agent-based models do about climate change?",
    "What's the difference between a markov chain and a hidden markov model?",
    "What are the latest advancements in reinforcement learning?",
    "What is known about different modes for human-AI teaming?",
]
EMBEDDING_MODEL_NAME = "allenai-specter"
LLM_MODEL_NAME = "Qwen/Qwen2-7B-Instruct"

# Load the dataset and convert to pandas
data = pandas.read_parquet("hf://datasets/ccm/publications/data/train-00000-of-00001.parquet")

# Filter out any publications without an abstract
abstract_is_null = [
    '"abstract": null' in json.dumps(bibdict) for bibdict in data["bib_dict"].values
]
data = data[~pandas.Series(abstract_is_null)]
data.reset_index(inplace=True)

# Load the model for later use in embeddings
model = sentence_transformers.SentenceTransformer(EMBEDDING_MODEL_NAME)

# Create an LLM pipeline that we can send queries to
tokenizer = transformers.AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
streamer = transformers.TextIteratorStreamer(
    tokenizer, skip_prompt=True, skip_special_tokens=True
)
chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
    LLM_MODEL_NAME, torch_dtype="auto", device_map="auto"
)

# Create a FAISS index for fast similarity search
metric = faiss.METRIC_INNER_PRODUCT
vectors = numpy.stack(data["embedding"].tolist(), axis=0)
index = faiss.IndexFlatL2(len(data["embedding"][0]))
index.metric_type = metric
faiss.normalize_L2(vectors)
index.train(vectors)
index.add(vectors)


def preprocess(query: str, k: int) -> tuple[str, str]:
    """
    Searches the dataset for the top k most relevant papers to the query and returns a prompt and references
    Args:
        query (str): The user's query
        k (int): The number of results to return
    Returns:
        tuple[str, str]: A tuple containing the prompt and references
    """
    encoded_query = numpy.expand_dims(model.encode(query), axis=0)
    print(query, encoded_query)
    faiss.normalize_L2(encoded_query)
    D, I = index.search(encoded_query, k)
    top_five = data.loc[I[0]]

    prompt = (
        "You are an AI assistant who delights in helping people learn about research from the Design "
        "Research Collective, which is a research lab at Carnegie Mellon University led by Professor "
        "Chris McComb. Your main task is to provide an ANSWER to the USER_QUERY based on the "
        "RESEARCH_ABSTRACTS.\n\n"
        "RESEARCH_ABSTRACTS:\n{{ABSTRACTS_GO_HERE}}\n\n"
        "USER_GUERY:\n{{QUERY_GOES_HERE}}\n\n"
        "ANSWER:\n"
    )

    references = "\n\n## References\n\n"
    research_abstracts = ""

    for i in range(k):
        year = str(int(top_five["bib_dict"].values[i]["pub_year"]))
        abstract = top_five["bib_dict"].values[i]["abstract"]
        url = "(https://scholar.google.com/citations?view_op=view_citation&citation_for_view=" + top_five["author_pub_id"].values[i]
        title = top_five["bib_dict"].values[i]["title"]
        authors = ", ".join(
                [
                    author.split(" ")[-1]
                    for author in top_five["bib_dict"]
                    .values[i]["author"]
                    .split(" and ")
                ]
            )

        research_abstracts += str(i + i) + ". '" + title + "' by " + authors + "\n" + abstract + "\n"
        references += (
            str(i + 1)
            + ". "
            + authors
            + ". ("
            + year
            + "). ["
            + title
            + "]"
            + url
            + ").\n"
        )
        
    prompt = prompt.replace("{{ABSTRACTS_GO_HERE}}", research_abstracts)
    prompt = prompt.replace("{{QUERY_GOES_HERE}}", query)

    return prompt, references
    
def postprocess(response: str, bypass_from_preprocessing: str) -> str:
    """
    Applies a postprocessing step to the LLM's response before the user receives it
    Args:
        response (str): The LLM's response
        bypass_from_preprocessing (str): The bypass variable from the preprocessing step
    Returns:
        str: The postprocessed response
    """
    return response + bypass_from_preprocessing


@spaces.GPU
def reply(message: str, history: list[str]) -> str:
    """
    This function is responsible for crafting a response
    Args:
        message (str): The user's message
        history (list[str]): The conversation history
    Returns:
        str: The AI's response
    """

    # Apply preprocessing
    message, bypass = preprocess(message, 5)

    # This is some handling that is applied to the history variable to put it in a good format
    history_transformer_format = [
        {"role": role, "content": message_pair[idx]}
        for message_pair in history
        for idx, role in enumerate(["user", "assistant"])
        if message_pair[idx] is not None
    ] + [{"role": "user", "content": message}]

    # Stream a response from pipe
    text = tokenizer.apply_chat_template(
        history_transformer_format, tokenize=False, add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")

    generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)
    t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
    t.start()

    partial_message = ""
    for new_token in streamer:
        if new_token != "<":
            partial_message += new_token
            time.sleep(0.05)
            yield partial_message

    yield partial_message + bypass


# Create and run the gradio interface
gradio.ChatInterface(
    reply,
    examples=EXAMPLE_QUERIES,
    chatbot=gradio.Chatbot(
        show_label=False,
        show_share_button=False,
        show_copy_button=False,
        value=[[None, GREETING]],
        avatar_images=[
            "https://cdn.dribbble.com/users/316121/screenshots/2333676/11-04_scotty-plaid_dribbble.png",
            "https://media.thetab.com/blogs.dir/90/files/2021/06/screenshot-2021-06-10-at-110730-1024x537.png",
        ],
        height="60vh",
        bubble_full_width=False,
    ),
    retry_btn=None,
    undo_btn=None,
    clear_btn=None,
    theme=gradio.themes.Default(
        font=[gradio.themes.GoogleFont("Zilla Slab")]
    )
).launch(debug=True)