Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,225 Bytes
3caa7cd 2cdfb26 3caa7cd 2cdfb26 3caa7cd d7a54c3 3caa7cd 2ce9b97 3caa7cd c6cda2e 2494e4f 3caa7cd 2249b9c 3caa7cd 6dbf6d3 541f855 6dbf6d3 541f855 6dbf6d3 7e37bf7 a1a6086 2494e4f a64dda4 aa7a513 5e710c8 a64dda4 3caa7cd 6dbf6d3 a64dda4 6dbf6d3 6a4b3a2 c6cda2e 24dc567 a64dda4 d7a54c3 bc256ab 936fa72 d7a54c3 936fa72 bc256ab c6cda2e 24dc567 6dbf6d3 24dc567 6dbf6d3 24dc567 6dbf6d3 24dc567 f186297 24dc567 c6cda2e d7a54c3 24dc567 3caa7cd 1157109 24dc567 3caa7cd d7a54c3 24dc567 c6cda2e f186297 3caa7cd f186297 3caa7cd f186297 3caa7cd f186297 3caa7cd f186297 3caa7cd 24dc567 3caa7cd 24dc567 d7a54c3 6dbf6d3 d7a54c3 3caa7cd 8a48a1f 6dbf6d3 d7a54c3 24dc567 d7a54c3 04fe4c4 d7a54c3 30d4d88 3caa7cd 30d4d88 648f18a 30d4d88 3caa7cd 30d4d88 3caa7cd 30d4d88 aa33df0 30d4d88 3c845c1 d7a54c3 ebc5453 6dbf6d3 3caa7cd e14a8ae ff929df 1157109 e14a8ae 6e12d67 ff929df 06c4e96 3caa7cd 4928a53 3caa7cd e14a8ae 1aae6c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import json # to work with JSON
import threading # to allow streaming response
import time # to pave the deliver of the message
import faiss # to create a search index
import gradio # for the interface
import numpy # to work with vectors
import pandas # to work with pandas
import sentence_transformers # to load an embedding model
import spaces # for GPU
import transformers # to load an LLM
# Constants
GREETING = (
"Howdy! I'm an AI agent that uses a [retrieval-augmented generation]("
"https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about research by the "
"[Design Research Collective](https://cmudrc.github.io/). And the best part is that I always cite my sources! What"
" can I tell you about today?"
)
EXAMPLE_QUERIES = [
"Tell me about new research at the intersection of additive manufacturing and machine learning.",
"What is a physics-informed neural network and what can it be used for?",
"What can agent-based models do about climate change?",
"What's the difference between a markov chain and a hidden markov model?",
"What are the latest advancements in reinforcement learning?",
"What is known about different modes for human-AI teaming?",
]
EMBEDDING_MODEL_NAME = "allenai-specter"
LLM_MODEL_NAME = "Qwen/Qwen2-7B-Instruct"
# Load the dataset and convert to pandas
data = pandas.read_parquet("hf://datasets/ccm/publications/data/train-00000-of-00001.parquet")
# Filter out any publications without an abstract
abstract_is_null = [
'"abstract": null' in json.dumps(bibdict) for bibdict in data["bib_dict"].values
]
data = data[~pandas.Series(abstract_is_null)]
data.reset_index(inplace=True)
# Load the model for later use in embeddings
model = sentence_transformers.SentenceTransformer(EMBEDDING_MODEL_NAME)
# Create an LLM pipeline that we can send queries to
tokenizer = transformers.AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
streamer = transformers.TextIteratorStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True
)
chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME, torch_dtype="auto", device_map="auto"
)
# Create a FAISS index for fast similarity search
metric = faiss.METRIC_INNER_PRODUCT
vectors = numpy.stack(data["embedding"].tolist(), axis=0)
index = faiss.IndexFlatL2(len(data["embedding"][0]))
index.metric_type = metric
faiss.normalize_L2(vectors)
index.train(vectors)
index.add(vectors)
def preprocess(query: str, k: int) -> tuple[str, str]:
"""
Searches the dataset for the top k most relevant papers to the query and returns a prompt and references
Args:
query (str): The user's query
k (int): The number of results to return
Returns:
tuple[str, str]: A tuple containing the prompt and references
"""
encoded_query = numpy.expand_dims(model.encode(query), axis=0)
print(query, encoded_query)
faiss.normalize_L2(encoded_query)
D, I = index.search(encoded_query, k)
top_five = data.loc[I[0]]
prompt = (
"You are an AI assistant who delights in helping people learn about research from the Design "
"Research Collective, which is a research lab at Carnegie Mellon University led by Professor "
"Chris McComb. Your main task is to provide an ANSWER to the USER_QUERY based on the "
"RESEARCH_ABSTRACTS.\n\n"
"RESEARCH_ABSTRACTS:\n{{ABSTRACTS_GO_HERE}}\n\n"
"USER_GUERY:\n{{QUERY_GOES_HERE}}\n\n"
"ANSWER:\n"
)
references = "\n\n## References\n\n"
research_abstracts = ""
for i in range(k):
year = str(int(top_five["bib_dict"].values[i]["pub_year"]))
abstract = top_five["bib_dict"].values[i]["abstract"]
url = "(https://scholar.google.com/citations?view_op=view_citation&citation_for_view=" + top_five["author_pub_id"].values[i]
title = top_five["bib_dict"].values[i]["title"]
authors = ", ".join(
[
author.split(" ")[-1]
for author in top_five["bib_dict"]
.values[i]["author"]
.split(" and ")
]
)
research_abstracts += str(i + i) + ". '" + title + "' by " + authors + "\n" + abstract + "\n"
references += (
str(i + 1)
+ ". "
+ authors
+ ". ("
+ year
+ "). ["
+ title
+ "]"
+ url
+ ").\n"
)
prompt = prompt.replace("{{ABSTRACTS_GO_HERE}}", research_abstracts)
prompt = prompt.replace("{{QUERY_GOES_HERE}}", query)
return prompt, references
def postprocess(response: str, bypass_from_preprocessing: str) -> str:
"""
Applies a postprocessing step to the LLM's response before the user receives it
Args:
response (str): The LLM's response
bypass_from_preprocessing (str): The bypass variable from the preprocessing step
Returns:
str: The postprocessed response
"""
return response + bypass_from_preprocessing
@spaces.GPU
def reply(message: str, history: list[str]) -> str:
"""
This function is responsible for crafting a response
Args:
message (str): The user's message
history (list[str]): The conversation history
Returns:
str: The AI's response
"""
# Apply preprocessing
message, bypass = preprocess(message, 5)
# This is some handling that is applied to the history variable to put it in a good format
history_transformer_format = [
{"role": role, "content": message_pair[idx]}
for message_pair in history
for idx, role in enumerate(["user", "assistant"])
if message_pair[idx] is not None
] + [{"role": "user", "content": message}]
# Stream a response from pipe
text = tokenizer.apply_chat_template(
history_transformer_format, tokenize=False, add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")
generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)
t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
t.start()
partial_message = ""
for new_token in streamer:
if new_token != "<":
partial_message += new_token
time.sleep(0.05)
yield partial_message
yield partial_message + bypass
# Create and run the gradio interface
gradio.ChatInterface(
reply,
examples=EXAMPLE_QUERIES,
chatbot=gradio.Chatbot(
show_label=False,
show_share_button=False,
show_copy_button=False,
value=[[None, GREETING]],
avatar_images=[
"https://cdn.dribbble.com/users/316121/screenshots/2333676/11-04_scotty-plaid_dribbble.png",
"https://media.thetab.com/blogs.dir/90/files/2021/06/screenshot-2021-06-10-at-110730-1024x537.png",
],
height="60vh",
bubble_full_width=False,
),
retry_btn=None,
undo_btn=None,
clear_btn=None,
theme=gradio.themes.Default(
font=[gradio.themes.GoogleFont("Zilla Slab")]
)
).launch(debug=True)
|