Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. | |
import torch | |
from . import Camera | |
import numpy as np | |
def projection(fovy, n=1.0, f=50.0, near_plane=None): | |
focal = np.tan(fovy / 180.0 * np.pi * 0.5) | |
if near_plane is None: | |
near_plane = n | |
return np.array( | |
[[n / focal, 0, 0, 0], | |
[0, n / -focal, 0, 0], | |
[0, 0, -(f + near_plane) / (f - near_plane), -(2 * f * near_plane) / (f - near_plane)], | |
[0, 0, -1, 0]]).astype(np.float32) | |
def projection_2(opt): | |
zfar= opt.zfar | |
znear= opt.znear | |
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy)) | |
proj_matrix = torch.zeros(4, 4, dtype=torch.float32) | |
proj_matrix[0, 0] = 1 / tan_half_fov | |
proj_matrix[1, 1] = 1 / tan_half_fov | |
proj_matrix[2, 2] = (zfar + znear) / (zfar - znear) | |
proj_matrix[3, 2] = - (zfar * znear) / (zfar - znear) | |
proj_matrix[2, 3] = 1 | |
return proj_matrix | |
class PerspectiveCamera(Camera): | |
def __init__(self, opt, device='cuda'): | |
super(PerspectiveCamera, self).__init__() | |
self.device = device | |
self.proj_mtx = torch.from_numpy(projection(opt.fovy, f=1000.0, n=1.0, near_plane=0.1)).to(self.device).unsqueeze(dim=0) | |
#self.proj_mtx= projection_2(opt).to(self.device).unsqueeze(dim=0) | |
def project(self, points_bxnx4): | |
out = torch.matmul( | |
points_bxnx4, | |
torch.transpose(self.proj_mtx, 1, 2)) | |
return out | |