Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -32,34 +32,9 @@ def end_session(req: gr.Request):
|
|
32 |
|
33 |
|
34 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
35 |
-
"""
|
36 |
-
Preprocess the input image.
|
37 |
-
|
38 |
-
Args:
|
39 |
-
image (Image.Image): The input image.
|
40 |
-
|
41 |
-
Returns:
|
42 |
-
Image.Image: The preprocessed image.
|
43 |
-
"""
|
44 |
processed_image = pipeline.preprocess_image(image)
|
45 |
return processed_image
|
46 |
|
47 |
-
|
48 |
-
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
49 |
-
"""
|
50 |
-
Preprocess a list of input images.
|
51 |
-
|
52 |
-
Args:
|
53 |
-
images (List[Tuple[Image.Image, str]]): The input images.
|
54 |
-
|
55 |
-
Returns:
|
56 |
-
List[Image.Image]: The preprocessed images.
|
57 |
-
"""
|
58 |
-
images = [image[0] for image in images]
|
59 |
-
processed_images = [pipeline.preprocess_image(image) for image in images]
|
60 |
-
return processed_images
|
61 |
-
|
62 |
-
|
63 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
64 |
return {
|
65 |
'gaussian': {
|
@@ -110,66 +85,29 @@ def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
110 |
@spaces.GPU
|
111 |
def image_to_3d(
|
112 |
image: Image.Image,
|
113 |
-
multiimages: List[Tuple[Image.Image, str]],
|
114 |
-
is_multiimage: bool,
|
115 |
seed: int,
|
116 |
ss_guidance_strength: float,
|
117 |
ss_sampling_steps: int,
|
118 |
slat_guidance_strength: float,
|
119 |
slat_sampling_steps: int,
|
120 |
-
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
121 |
req: gr.Request,
|
122 |
) -> Tuple[dict, str]:
|
123 |
-
"""
|
124 |
-
Convert an image to a 3D model.
|
125 |
-
|
126 |
-
Args:
|
127 |
-
image (Image.Image): The input image.
|
128 |
-
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
|
129 |
-
is_multiimage (bool): Whether is in multi-image mode.
|
130 |
-
seed (int): The random seed.
|
131 |
-
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
132 |
-
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
133 |
-
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
134 |
-
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
135 |
-
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
136 |
-
|
137 |
-
Returns:
|
138 |
-
dict: The information of the generated 3D model.
|
139 |
-
str: The path to the video of the 3D model.
|
140 |
-
"""
|
141 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
else:
|
158 |
-
outputs = pipeline.run_multi_image(
|
159 |
-
[image[0] for image in multiimages],
|
160 |
-
seed=seed,
|
161 |
-
formats=["gaussian", "mesh"],
|
162 |
-
preprocess_image=False,
|
163 |
-
sparse_structure_sampler_params={
|
164 |
-
"steps": ss_sampling_steps,
|
165 |
-
"cfg_strength": ss_guidance_strength,
|
166 |
-
},
|
167 |
-
slat_sampler_params={
|
168 |
-
"steps": slat_sampling_steps,
|
169 |
-
"cfg_strength": slat_guidance_strength,
|
170 |
-
},
|
171 |
-
mode=multiimage_algo,
|
172 |
-
)
|
173 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
174 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
175 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
@@ -187,17 +125,7 @@ def extract_glb(
|
|
187 |
texture_size: int,
|
188 |
req: gr.Request,
|
189 |
) -> Tuple[str, str]:
|
190 |
-
"""
|
191 |
-
Extract a GLB file from the 3D model.
|
192 |
-
|
193 |
-
Args:
|
194 |
-
state (dict): The state of the generated 3D model.
|
195 |
-
mesh_simplify (float): The mesh simplification factor.
|
196 |
-
texture_size (int): The texture resolution.
|
197 |
|
198 |
-
Returns:
|
199 |
-
str: The path to the extracted GLB file.
|
200 |
-
"""
|
201 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
202 |
gs, mesh = unpack_state(state)
|
203 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
@@ -209,15 +137,7 @@ def extract_glb(
|
|
209 |
|
210 |
@spaces.GPU
|
211 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
212 |
-
"""
|
213 |
-
Extract a Gaussian file from the 3D model.
|
214 |
-
|
215 |
-
Args:
|
216 |
-
state (dict): The state of the generated 3D model.
|
217 |
|
218 |
-
Returns:
|
219 |
-
str: The path to the extracted Gaussian file.
|
220 |
-
"""
|
221 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
222 |
gs, _ = unpack_state(state)
|
223 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
@@ -225,21 +145,6 @@ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
225 |
torch.cuda.empty_cache()
|
226 |
return gaussian_path, gaussian_path
|
227 |
|
228 |
-
|
229 |
-
def prepare_multi_example() -> List[Image.Image]:
|
230 |
-
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
|
231 |
-
images = []
|
232 |
-
for case in multi_case:
|
233 |
-
_images = []
|
234 |
-
for i in range(1, 4):
|
235 |
-
img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
|
236 |
-
W, H = img.size
|
237 |
-
img = img.resize((int(W / H * 512), 512))
|
238 |
-
_images.append(np.array(img))
|
239 |
-
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
|
240 |
-
return images
|
241 |
-
|
242 |
-
|
243 |
def split_image(image: Image.Image) -> List[Image.Image]:
|
244 |
"""
|
245 |
Split an image into multiple views.
|
@@ -269,14 +174,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
269 |
with gr.Tabs() as input_tabs:
|
270 |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
271 |
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
272 |
-
|
273 |
-
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
274 |
-
gr.Markdown("""
|
275 |
-
Input different views of the object in separate images.
|
276 |
-
|
277 |
-
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
278 |
-
""")
|
279 |
-
|
280 |
with gr.Accordion(label="Generation Settings", open=False):
|
281 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
282 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
@@ -288,8 +186,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
288 |
with gr.Row():
|
289 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
290 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
291 |
-
|
292 |
-
|
293 |
generate_btn = gr.Button("Generate")
|
294 |
|
295 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
@@ -311,7 +208,6 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
311 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
312 |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
313 |
|
314 |
-
is_multiimage = gr.State(False)
|
315 |
output_buf = gr.State()
|
316 |
|
317 |
# Example images at the bottom of the page
|
@@ -327,15 +223,6 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
327 |
run_on_click=True,
|
328 |
examples_per_page=64,
|
329 |
)
|
330 |
-
with gr.Row(visible=False) as multiimage_example:
|
331 |
-
examples_multi = gr.Examples(
|
332 |
-
examples=prepare_multi_example(),
|
333 |
-
inputs=[image_prompt],
|
334 |
-
fn=split_image,
|
335 |
-
outputs=[multiimage_prompt],
|
336 |
-
run_on_click=True,
|
337 |
-
examples_per_page=8,
|
338 |
-
)
|
339 |
|
340 |
# Handlers
|
341 |
demo.load(start_session)
|
@@ -345,21 +232,12 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
345 |
lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
|
346 |
outputs=[is_multiimage, single_image_example, multiimage_example]
|
347 |
)
|
348 |
-
multiimage_input_tab.select(
|
349 |
-
lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
|
350 |
-
outputs=[is_multiimage, single_image_example, multiimage_example]
|
351 |
-
)
|
352 |
|
353 |
image_prompt.upload(
|
354 |
preprocess_image,
|
355 |
inputs=[image_prompt],
|
356 |
outputs=[image_prompt],
|
357 |
)
|
358 |
-
multiimage_prompt.upload(
|
359 |
-
preprocess_images,
|
360 |
-
inputs=[multiimage_prompt],
|
361 |
-
outputs=[multiimage_prompt],
|
362 |
-
)
|
363 |
|
364 |
generate_btn.click(
|
365 |
get_seed,
|
@@ -367,7 +245,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
367 |
outputs=[seed],
|
368 |
).then(
|
369 |
image_to_3d,
|
370 |
-
inputs=[image_prompt,
|
371 |
outputs=[output_buf, video_output],
|
372 |
).then(
|
373 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
|
|
32 |
|
33 |
|
34 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
processed_image = pipeline.preprocess_image(image)
|
36 |
return processed_image
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
39 |
return {
|
40 |
'gaussian': {
|
|
|
85 |
@spaces.GPU
|
86 |
def image_to_3d(
|
87 |
image: Image.Image,
|
|
|
|
|
88 |
seed: int,
|
89 |
ss_guidance_strength: float,
|
90 |
ss_sampling_steps: int,
|
91 |
slat_guidance_strength: float,
|
92 |
slat_sampling_steps: int,
|
|
|
93 |
req: gr.Request,
|
94 |
) -> Tuple[dict, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
96 |
+
outputs = pipeline.run(
|
97 |
+
image,
|
98 |
+
seed=seed,
|
99 |
+
formats=["gaussian", "mesh"],
|
100 |
+
preprocess_image=False,
|
101 |
+
sparse_structure_sampler_params={
|
102 |
+
"steps": ss_sampling_steps,
|
103 |
+
"cfg_strength": ss_guidance_strength,
|
104 |
+
},
|
105 |
+
slat_sampler_params={
|
106 |
+
"steps": slat_sampling_steps,
|
107 |
+
"cfg_strength": slat_guidance_strength,
|
108 |
+
},
|
109 |
+
)
|
110 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
112 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
113 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
|
|
125 |
texture_size: int,
|
126 |
req: gr.Request,
|
127 |
) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
|
|
|
|
|
|
129 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
130 |
gs, mesh = unpack_state(state)
|
131 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
|
|
137 |
|
138 |
@spaces.GPU
|
139 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
140 |
|
|
|
|
|
|
|
141 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
142 |
gs, _ = unpack_state(state)
|
143 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
|
|
145 |
torch.cuda.empty_cache()
|
146 |
return gaussian_path, gaussian_path
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
def split_image(image: Image.Image) -> List[Image.Image]:
|
149 |
"""
|
150 |
Split an image into multiple views.
|
|
|
174 |
with gr.Tabs() as input_tabs:
|
175 |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
176 |
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
177 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
with gr.Accordion(label="Generation Settings", open=False):
|
179 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
180 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
186 |
with gr.Row():
|
187 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
188 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
189 |
+
|
|
|
190 |
generate_btn = gr.Button("Generate")
|
191 |
|
192 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
|
|
208 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
209 |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
210 |
|
|
|
211 |
output_buf = gr.State()
|
212 |
|
213 |
# Example images at the bottom of the page
|
|
|
223 |
run_on_click=True,
|
224 |
examples_per_page=64,
|
225 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
# Handlers
|
228 |
demo.load(start_session)
|
|
|
232 |
lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
|
233 |
outputs=[is_multiimage, single_image_example, multiimage_example]
|
234 |
)
|
|
|
|
|
|
|
|
|
235 |
|
236 |
image_prompt.upload(
|
237 |
preprocess_image,
|
238 |
inputs=[image_prompt],
|
239 |
outputs=[image_prompt],
|
240 |
)
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
generate_btn.click(
|
243 |
get_seed,
|
|
|
245 |
outputs=[seed],
|
246 |
).then(
|
247 |
image_to_3d,
|
248 |
+
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
249 |
outputs=[output_buf, video_output],
|
250 |
).then(
|
251 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|