import os import shutil import tempfile import time from os import path import gradio as gr import numpy as np import rembg import spaces import torch from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, StableDiffusionXLPipeline, LCMScheduler from einops import rearrange from huggingface_hub import hf_hub_download from omegaconf import OmegaConf from PIL import Image from pytorch_lightning import seed_everything from safetensors.torch import load_file from torchvision.transforms import v2 from tqdm import tqdm from src.utils.camera_util import (FOV_to_intrinsics, get_circular_camera_poses, get_zero123plus_input_cameras) from src.utils.infer_util import (remove_background, resize_foreground) from src.utils.mesh_util import save_glb, save_obj from src.utils.train_util import instantiate_from_config # Inicializa un tensor en CUDA y verifica el dispositivo. zero = torch.Tensor([0]).cuda() print(zero.device) # Verifica que el dispositivo sea CUDA. print(zero.device) # Verifica nuevamente que el dispositivo sea CUDA. # Función para encontrar el path de CUDA. def find_cuda(): cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') if cuda_home and os.path.exists(cuda_home): return cuda_home nvcc_path = shutil.which('nvcc') if nvcc_path: cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) return cuda_path return None # Función para obtener las cámaras de renderizado. def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) if is_flexicubes: cameras = torch.linalg.inv(c2ws) cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) else: extrinsics = c2ws.flatten(-2) intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) cameras = torch.cat([extrinsics, intrinsics], dim=-1) cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) return cameras # Verifica si la imagen de entrada es nula. def check_input_image(input_image): if input_image is None: raise gr.Error("No image selected!") # Preprocesa la imagen de entrada y opcionalmente elimina el fondo. def preprocess(input_image, do_remove_background): rembg_session = rembg.new_session() if do_remove_background else None if do_remove_background: input_image = remove_background(input_image, rembg_session) input_image = resize_foreground(input_image, 1) return input_image # Genera vistas múltiples de la imagen de entrada. @spaces.GPU(duration=20) def generate_mvs(input_image, sample_steps, sample_seed): seed_everything(sample_seed) print(zero.device) # Verifica que el dispositivo sea CUDA. z123_image = pipeline(input_image, num_inference_steps=sample_steps).images[0] show_image = np.asarray(z123_image, dtype=np.uint8) show_image = torch.from_numpy(show_image) show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2) show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3) show_image = Image.fromarray(show_image.numpy()) return z123_image, show_image # Convierte imágenes en modelos 3D. @spaces.GPU def make3d(images): print(zero.device) # Verifica que el dispositivo sea CUDA. global model if IS_FLEXICUBES: model.init_flexicubes_geometry(device, use_renderer=False) model = model.eval() images = np.asarray(images, dtype=np.float32) / 255.0 images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device) render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device) images = images.unsqueeze(0).to(device) images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) mesh_fpath = tempfile.NamedTemporaryFile(suffix=".obj", delete=False).name print(mesh_fpath) mesh_basename = os.path.basename(mesh_fpath).split('.')[0] mesh_dirname = os.path.dirname(mesh_fpath) mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") with torch.no_grad(): planes = model.forward_planes(images, input_cameras) mesh_out = model.extract_mesh(planes, use_texture_map=False, **infer_config) vertices, faces, vertex_colors = mesh_out vertices = vertices[:, [1, 2, 0]] save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) save_obj(vertices, faces, vertex_colors, mesh_fpath) print(f"Mesh saved to {mesh_fpath}") return mesh_fpath, mesh_glb_fpath # Procesa la imagen generada a partir de un prompt de texto. @spaces.GPU def process_image(num_images, prompt): print(zero.device) # Verifica que el dispositivo sea CUDA. global pipe with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): return pipe( prompt=[prompt]*num_images, generator=torch.Generator().manual_seed(123), num_inference_steps=1, guidance_scale=0., height=int(512), width=int(512), timesteps=[800] ).images # Configuración inicial del entorno CUDA y carga de configuración del modelo. cuda_path = find_cuda() config_path = 'configs/instant-mesh-large.yaml' config = OmegaConf.load(config_path) config_name = os.path.basename(config_path).replace('.yaml', '') model_config = config.model_config infer_config = config.infer_config IS_FLEXICUBES = config_name.startswith('instant-mesh') device = torch.device('cuda') # Carga del modelo de difusión. print('Loading diffusion model ...') pipeline = DiffusionPipeline.from_pretrained( "sudo-ai/zero123plus-v1.2", custom_pipeline="zero123plus", torch_dtype=torch.float16, ) pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( pipeline.scheduler.config, timestep_spacing='trailing' ) unet_ckpt_path = hf_hub_download( repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") state_dict = torch.load(unet_ckpt_path, map_location='cpu') pipeline.unet.load_state_dict(state_dict, strict=True) pipeline = pipeline.to(device) # Carga del modelo de reconstrucción. print('Loading reconstruction model ...') model_ckpt_path = hf_hub_download( repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model") model = instantiate_from_config(model_config) state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} model.load_state_dict(state_dict, strict=True) model = model.to(device) print('Carga Completa!') # Interfaz de usuario usando Gradio. with gr.Blocks() as demo: with gr.Row(variant="panel"): with gr.Column(): with gr.Row(): input_image = gr.Image( label="Imagen de Entrada", image_mode="RGBA", sources="upload", type="pil", elem_id="content_image", ) processed_image = gr.Image( label="Imagen sin Fondo", image_mode="RGBA", type="pil", interactive=False ) with gr.Row(): with gr.Group(): do_remove_background = gr.Checkbox( label="Quitar Fondo", value=True) sample_seed = gr.Number( value=42, label="Valor de la semilla", precision=0) sample_steps = gr.Slider( label="Pasos de muestreo", minimum=30, maximum=75, value=75, step=5) with gr.Row(): submit = gr.Button( "Generar", elem_id="generate", variant="primary") with gr.Column(): with gr.Row(): with gr.Column(): mv_show_images = gr.Image( label="Generar Multi-vistas", type="pil", width=379, interactive=False ) with gr.Row(): with gr.Tab("OBJ"): output_model_obj = gr.Model3D( label="(Formato OBJ)", interactive=False, ) with gr.Tab("GLB"): output_model_glb = gr.Model3D( label="(Formato GLB)", interactive=False, ) mv_images = gr.State() submit.click(fn=check_input_image, inputs=[input_image]).success( fn=preprocess, inputs=[input_image, do_remove_background], outputs=[processed_image], ).success( fn=generate_mvs, inputs=[processed_image, sample_steps, sample_seed], outputs=[mv_images, mv_show_images] ).success( fn=make3d, inputs=[mv_images], outputs=[output_model_obj, output_model_glb] ) demo.launch()