rioanggara commited on
Commit
378cc86
·
1 Parent(s): 0aad19c
Files changed (1) hide show
  1. app.py +3 -7
app.py CHANGED
@@ -1,7 +1,6 @@
1
  import gradio as gr
2
  from collections import Counter
3
  import re
4
- from textblob import TextBlob
5
  import textstat
6
  from transformers import pipeline
7
  from langdetect import detect
@@ -22,9 +21,6 @@ def word_and_char_counter(text):
22
  most_common_words = word_freq.most_common(3)
23
  unique_words = [word for word, count in word_freq.items() if count == 1]
24
 
25
- # Analyze sentiment
26
- sentiment = TextBlob(text).sentiment
27
-
28
  # Calculate Flesch Reading Ease score
29
  reading_ease = textstat.flesch_reading_ease(text)
30
 
@@ -37,8 +33,8 @@ def word_and_char_counter(text):
37
  # Format the results
38
  freq_results = ', '.join([f"'{word}': {count}" for word, count in most_common_words])
39
  unique_words_result = ', '.join(unique_words)
40
- sentiment_text = 'Positive' if sentiment.polarity > 0 else 'Negative' if sentiment.polarity < 0 else 'Neutral'
41
- return f"Language: {language}. {num_sentences} sentences, {num_words} words, {num_chars} characters. Most common words: {freq_results}. Unique words: {unique_words_result}. Sentiment: {sentiment_text}. Readability (Flesch Reading Ease): {reading_ease:.2f}. Summary: {summary}"
42
 
43
  # Define your interface
44
  interface = gr.Interface(
@@ -46,7 +42,7 @@ interface = gr.Interface(
46
  inputs=gr.Textbox(lines=4, placeholder="Type something here..."),
47
  outputs="text",
48
  title="Comprehensive Text Analysis with Language Detection",
49
- description="This app provides detailed analysis including language detection, sentence, word, and character counts, lists the most common and unique words, analyzes sentiment, calculates readability, and provides a concise summary of the text."
50
  )
51
 
52
  # Launch the app
 
1
  import gradio as gr
2
  from collections import Counter
3
  import re
 
4
  import textstat
5
  from transformers import pipeline
6
  from langdetect import detect
 
21
  most_common_words = word_freq.most_common(3)
22
  unique_words = [word for word, count in word_freq.items() if count == 1]
23
 
 
 
 
24
  # Calculate Flesch Reading Ease score
25
  reading_ease = textstat.flesch_reading_ease(text)
26
 
 
33
  # Format the results
34
  freq_results = ', '.join([f"'{word}': {count}" for word, count in most_common_words])
35
  unique_words_result = ', '.join(unique_words)
36
+
37
+ return f"Language: {language}. {num_sentences} sentences, {num_words} words, {num_chars} characters. Most common words: {freq_results}. Unique words: {unique_words_result}. Readability (Flesch Reading Ease): {reading_ease:.2f}. Summary: {summary}"
38
 
39
  # Define your interface
40
  interface = gr.Interface(
 
42
  inputs=gr.Textbox(lines=4, placeholder="Type something here..."),
43
  outputs="text",
44
  title="Comprehensive Text Analysis with Language Detection",
45
+ description="This app provides detailed analysis including language detection, sentence, word, and character counts, lists the most common and unique words, calculates readability, and provides a concise summary of the text."
46
  )
47
 
48
  # Launch the app