Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import matplotlib.pyplot as plt | |
| from transformers import pipeline | |
| # Load the Hugging Face pipeline for translation | |
| translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") | |
| # Load the Hugging Face pipeline for text generation using GPT-J | |
| generator = pipeline("text-generation", model="EleutherAI/gpt-j-6B") | |
| # Define the function to generate the graph based on the translated prompt | |
| def generate_graph(prompt): | |
| # Translate the prompt to the desired language (e.g., from English to Spanish) | |
| translated_prompt = translator(prompt, max_length=100, src_lang="en", tgt_lang="es") | |
| translated_text = translated_prompt[0]['translation_text'] | |
| # Generate text using the Hugging Face pipeline with GPT-J | |
| response = generator(translated_text, max_length=100) | |
| text = response[0]['generated_text'] | |
| # Generate the graph using Matplotlib | |
| # Replace this code with your specific graph generation logic | |
| x = [1, 2, 3, 4, 5] | |
| y = [2, 4, 6, 8, 10] | |
| plt.plot(x, y) | |
| plt.xlabel('X') | |
| plt.ylabel('Y') | |
| plt.title('Generated Graph') | |
| # Save the generated graph to a file | |
| graph_path = '/path/to/generated_graph.png' | |
| plt.savefig(graph_path) | |
| return graph_path | |
| # Create the Gradio interface | |
| iface = gr.Interface( | |
| fn=generate_graph, | |
| inputs="text", | |
| outputs="file", | |
| title="Graph Generator", | |
| description="Generate a graph based on a translated prompt", | |
| examples=[ | |
| ["Translate and generate a graph"], | |
| ["Translate and graph the relationship between X and Y"], | |
| ] | |
| ) | |
| # Launch the Gradio interface | |
| iface.launch() |