Spaces:
Runtime error
Runtime error
Delete train.py
Browse files
train.py
DELETED
@@ -1,95 +0,0 @@
|
|
1 |
-
import joblib
|
2 |
-
|
3 |
-
from sklearn.datasets import fetch_openml
|
4 |
-
|
5 |
-
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
6 |
-
from sklearn.compose import make_column_transformer
|
7 |
-
|
8 |
-
from sklearn.pipeline import make_pipeline
|
9 |
-
|
10 |
-
from sklearn.model_selection import train_test_split, RandomizedSearchCV
|
11 |
-
|
12 |
-
from sklearn.linear_model import LogisticRegression
|
13 |
-
from sklearn.metrics import accuracy_score, classification_report
|
14 |
-
|
15 |
-
import pandas as pd
|
16 |
-
import numpy as np
|
17 |
-
import matplotlib.pyplot as plt
|
18 |
-
import seaborn as sns
|
19 |
-
from warnings import filterwarnings
|
20 |
-
filterwarnings('ignore')
|
21 |
-
|
22 |
-
df = pd.read_csv("/content/forest_health_data_with_target.csv")
|
23 |
-
|
24 |
-
|
25 |
-
target = 'Health_Status'
|
26 |
-
numeric_features = [
|
27 |
-
'Latitude',
|
28 |
-
'Longitude',
|
29 |
-
'DBH',
|
30 |
-
'Tree_Height',
|
31 |
-
'Crown_Width_North_South',
|
32 |
-
'Crown_Width_East_West',
|
33 |
-
'Slope',
|
34 |
-
'Elevation',
|
35 |
-
'Temperature',
|
36 |
-
'Humidity',
|
37 |
-
'Soil_TN',
|
38 |
-
'Soil_TP',
|
39 |
-
'Soil_AP',
|
40 |
-
'Soil_AN',
|
41 |
-
'Menhinick_Index',
|
42 |
-
'Gleason_Index',
|
43 |
-
'Fire_Risk_Index'
|
44 |
-
|
45 |
-
]
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
print("Creating data subsets")
|
51 |
-
|
52 |
-
X = df[numeric_features]
|
53 |
-
y = df[target]
|
54 |
-
|
55 |
-
Xtrain, Xtest, ytrain, ytest = train_test_split(
|
56 |
-
X, y,
|
57 |
-
test_size=0.2,
|
58 |
-
random_state=42
|
59 |
-
)
|
60 |
-
|
61 |
-
preprocessor = make_column_transformer(
|
62 |
-
(StandardScaler(), numeric_features),
|
63 |
-
)
|
64 |
-
|
65 |
-
model_logistic_regression = LogisticRegression(n_jobs=-1)
|
66 |
-
|
67 |
-
print("Estimating Best Model Pipeline")
|
68 |
-
|
69 |
-
model_pipeline = make_pipeline(
|
70 |
-
preprocessor,
|
71 |
-
model_logistic_regression
|
72 |
-
)
|
73 |
-
|
74 |
-
param_distribution = {
|
75 |
-
"logisticregression__C": [0.001, 0.01, 0.1, 0.5, 1]
|
76 |
-
}
|
77 |
-
|
78 |
-
rand_search_cv = RandomizedSearchCV(
|
79 |
-
model_pipeline,
|
80 |
-
param_distribution,
|
81 |
-
n_iter=3,
|
82 |
-
cv=3,
|
83 |
-
random_state=42
|
84 |
-
)
|
85 |
-
|
86 |
-
rand_search_cv.fit(Xtrain, ytrain)
|
87 |
-
|
88 |
-
print("Logging Metrics")
|
89 |
-
print(f"Accuracy: {rand_search_cv.best_score_}")
|
90 |
-
|
91 |
-
print("Serializing Model")
|
92 |
-
|
93 |
-
saved_model_path = "model.joblib"
|
94 |
-
|
95 |
-
joblib.dump(rand_search_cv.best_estimator_, saved_model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|