Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- model (3).joblib +3 -0
- requirements (1).txt +1 -0
- train.py +98 -0
model (3).joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd88a95d898fdfeaa52814163167680b1069d479b399777f32c33fb800a9e6c2
|
3 |
+
size 4550
|
requirements (1).txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
scikit-learn==1.2.2
|
train.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import joblib
|
3 |
+
|
4 |
+
from sklearn.datasets import fetch_openml
|
5 |
+
|
6 |
+
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
7 |
+
from sklearn.compose import make_column_transformer
|
8 |
+
|
9 |
+
from sklearn.pipeline import make_pipeline
|
10 |
+
|
11 |
+
from sklearn.model_selection import train_test_split, RandomizedSearchCV
|
12 |
+
|
13 |
+
from sklearn.linear_model import LogisticRegression
|
14 |
+
from sklearn.metrics import accuracy_score, classification_report
|
15 |
+
|
16 |
+
import pandas as pd
|
17 |
+
import numpy as np
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
+
import seaborn as sns
|
20 |
+
from warnings import filterwarnings
|
21 |
+
filterwarnings('ignore')
|
22 |
+
|
23 |
+
df = pd.read_csv("/content/forest_health_data_with_target.csv")
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
target = 'Health_Status'
|
29 |
+
numeric_features = [
|
30 |
+
'Latitude',
|
31 |
+
'Longitude',
|
32 |
+
'DBH',
|
33 |
+
'Tree_Height',
|
34 |
+
'Crown_Width_North_South',
|
35 |
+
'Crown_Width_East_West',
|
36 |
+
'Slope',
|
37 |
+
'Elevation',
|
38 |
+
'Temperature',
|
39 |
+
'Humidity',
|
40 |
+
'Soil_TN',
|
41 |
+
'Soil_TP',
|
42 |
+
'Soil_AP',
|
43 |
+
'Soil_AN',
|
44 |
+
'Menhinick_Index',
|
45 |
+
'Gleason_Index',
|
46 |
+
'Fire_Risk_Index'
|
47 |
+
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
print("Creating data subsets")
|
54 |
+
|
55 |
+
X = df[numeric_features]
|
56 |
+
y = df[target]
|
57 |
+
|
58 |
+
Xtrain, Xtest, ytrain, ytest = train_test_split(
|
59 |
+
X, y,
|
60 |
+
test_size=0.2,
|
61 |
+
random_state=42
|
62 |
+
)
|
63 |
+
|
64 |
+
preprocessor = make_column_transformer(
|
65 |
+
(StandardScaler(), numeric_features),
|
66 |
+
)
|
67 |
+
|
68 |
+
model_logistic_regression = LogisticRegression(n_jobs=-1)
|
69 |
+
|
70 |
+
print("Estimating Best Model Pipeline")
|
71 |
+
|
72 |
+
model_pipeline = make_pipeline(
|
73 |
+
preprocessor,
|
74 |
+
model_logistic_regression
|
75 |
+
)
|
76 |
+
|
77 |
+
param_distribution = {
|
78 |
+
"logisticregression__C": [0.001, 0.01, 0.1, 0.5, 1]
|
79 |
+
}
|
80 |
+
|
81 |
+
rand_search_cv = RandomizedSearchCV(
|
82 |
+
model_pipeline,
|
83 |
+
param_distribution,
|
84 |
+
n_iter=3,
|
85 |
+
cv=3,
|
86 |
+
random_state=42
|
87 |
+
)
|
88 |
+
|
89 |
+
rand_search_cv.fit(Xtrain, ytrain)
|
90 |
+
|
91 |
+
print("Logging Metrics")
|
92 |
+
print(f"Accuracy: {rand_search_cv.best_score_}")
|
93 |
+
|
94 |
+
print("Serializing Model")
|
95 |
+
|
96 |
+
saved_model_path = "model.joblib"
|
97 |
+
|
98 |
+
joblib.dump(rand_search_cv.best_estimator_, saved_model_path)
|