carisackc carisackc commited on
Commit
56e867e
·
0 Parent(s):

Duplicate from carisackc/Clinical

Browse files

Co-authored-by: Carisa Choy <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ shpi_w_rouge21Nov.csv filter=lfs diff=lfs merge=lfs -text
36
+ shpi25nov.csv filter=lfs diff=lfs merge=lfs -text
37
+ 24hourevents.csv filter=lfs diff=lfs merge=lfs -text
38
+ 24houreventsFulltextwdifference.csv filter=lfs diff=lfs merge=lfs -text
24hourevents.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4800fd232eac42eb8cb61ec0161e40dd87ec580db92920e35980bb6321be3f42
3
+ size 78926133
24houreventsFulltextwdifference.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fae31ed44681dce63ecaf00a885ebcc947673c7021aea7af4206625925a984d
3
+ size 59516709
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Clinical
3
+ emoji: 💩
4
+ colorFrom: blue
5
+ colorTo: red
6
+ sdk: streamlit
7
+ sdk_version: 1.10.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: other
11
+ duplicated_from: carisackc/Clinical
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ from math import ceil
5
+ from collections import Counter
6
+ from string import punctuation
7
+ import spacy
8
+ from negspacy.negation import Negex
9
+ from spacy import displacy
10
+ from spacy.lang.en import English
11
+ from spacy.matcher import PhraseMatcher
12
+ from spacy.tokens import Span
13
+ #import en_ner_bc5cdr_md
14
+ import re
15
+
16
+
17
+ from streamlit.components.v1 import html
18
+
19
+ # Store the initial value of widgets in session state
20
+ if "visibility" not in st.session_state:
21
+ st.session_state.visibility = "visible"
22
+ st.session_state.disabled = False
23
+
24
+ #nlp = en_core_web_lg.load()
25
+ nlp = spacy.load("en_ner_bc5cdr_md")
26
+
27
+ st.set_page_config(page_title ='Patient Inpatient Progression Dashboard',
28
+ #page_icon= "Notes",
29
+ layout='wide')
30
+ st.title('Patient Inpatient Progression Dashboard')
31
+ st.markdown(
32
+ """
33
+ <style>
34
+ [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
35
+ width: 400px;
36
+ }
37
+ [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
38
+ width: 400px;
39
+ margin-left: -230px;
40
+ }
41
+ </style>
42
+ """,
43
+ unsafe_allow_html=True,
44
+ )
45
+ st.sidebar.markdown('Using transformer model')
46
+
47
+ ## ======== Loading dataset ========
48
+ ## Loading in Admission Dataset
49
+ df = pd.read_csv('shpi25nov.csv')
50
+ df.sort_values(by='SUBJECT_ID',ascending = True, inplace=True)
51
+
52
+ # Loading in Admission chief Complaint and diagnosis
53
+ df2 = pd.read_csv('cohort_cc_adm_diag.csv')
54
+
55
+ # Loading in Dischare History
56
+ df3 = pd.read_csv('cohort_past_history_12072022.csv')
57
+ df3.sort_values(by='CHARTDATE',ascending = False, inplace=True)
58
+
59
+ # Loading in Daily Narrative
60
+ df4 = pd.read_csv('24houreventsFulltextwdifference.csv')
61
+ df4.sort_values(by=['SUBJECT_ID','HADM_ID','STORETIME'],ascending = True, inplace=True)
62
+
63
+
64
+ # combining both data into one
65
+ df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID'])
66
+
67
+ # Deleting admission chief complaint and diagnosis after combining
68
+ del df2
69
+
70
+ # Remove decimal point from Admission ID
71
+ df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
72
+ df3['HADM_ID'] = df3['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
73
+ df4['HADM_ID'] = df4['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
74
+ df3['INDEX_HADM_ID'] = df3['INDEX_HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
75
+ df3["CHARTDATE_HADM_ID"] = df3["CHARTDATE"].astype(str) +' ('+ df3["HADM_ID"] +')'
76
+ df3["DIAGNOSIS"] = df3["DIAGNOSIS"].str.capitalize()
77
+ df3["DISCHARGE_LOCATION"] = df3["DISCHARGE_LOCATION"].str.capitalize()
78
+
79
+ df3["TEXT"] =df3["TEXT"].replace(r'\n',' \n ', regex=True)
80
+ df3["TEXT"] =df3["TEXT"].replace(r'#',' ', regex=True)
81
+ df3["BertSummarizer"] =df3["BertSummarizer"].replace(r'#',' ', regex=True)
82
+
83
+
84
+ #Renaming column
85
+ df.rename(columns={'SUBJECT_ID':'Patient_ID',
86
+ 'HADM_ID':'Admission_ID',
87
+ 'hpi_input_text':'Original_Text',
88
+ 'hpi_reference_summary':'Reference_text'}, inplace = True)
89
+ df3.rename(columns={'SUBJECT_ID':'Patient_ID',
90
+ 'HADM_ID':'PAST_Admission_ID',
91
+ 'INDEX_HADM_ID':'Admission_ID'}, inplace = True)
92
+
93
+ df4.rename(columns={'SUBJECT_ID':'Patient_ID',
94
+ 'HADM_ID':'Admission_ID',
95
+ 'Full_24_Hour_Events':'Full Text'}, inplace = True)
96
+
97
+
98
+ #Filter selection
99
+ st.sidebar.header("Search for Patient:")
100
+
101
+ # ===== Initial filter for patient and admission id =====
102
+ patientid = df['Patient_ID'].unique()
103
+ patient = st.sidebar.selectbox('Select Patient ID:', patientid) #Filter Patient
104
+ admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] #Filter available Admission id for patient
105
+ HospitalAdmission = st.sidebar.selectbox(' ', admissionid)
106
+ pastHistoryEpDate = df3['CHARTDATE_HADM_ID'].loc[(df3['Patient_ID'] == patient) & (df3['Admission_ID']== HospitalAdmission)]
107
+ countOfAdmission = len(pastHistoryEpDate)
108
+
109
+
110
+ # List of Model available
111
+ model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
112
+
113
+ # ===== to display selected patient and admission id on main page
114
+ col3,col4 = st.columns(2)
115
+ patientid = col3.write(f"Patient ID: {patient} ")
116
+ admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
117
+
118
+ runtext = ''
119
+ inputNote ='Input note here:'
120
+ # Query out relevant Clinical notes
121
+ original_text = df.query(
122
+ "Patient_ID == @patient & Admission_ID == @HospitalAdmission"
123
+ )
124
+
125
+ original_text2 = original_text['Original_Text'].values
126
+ AdmissionChiefCom = original_text['Admission_Chief_Complaint'].values
127
+ diagnosis =original_text['DIAGNOSIS'].values
128
+ reference_text = original_text['Reference_text'].values
129
+
130
+ #dailyNoteChange = df4['_24_Hour_Events'].loc[(df4['Patient_ID'] == patient) & (df3['Admission_ID']== HospitalAdmission)]
131
+ dailyNoteChange =df4[['STORETIME','_24_Hour_Events']].loc[(df4['Patient_ID'] == patient) & (df4['Admission_ID']==HospitalAdmission) & df4['_24_Hour_Events'].notnull()]
132
+
133
+ dailyNoteChange.rename(columns={'STORETIME':'Time of Record',
134
+ '_24_Hour_Events':'Note Changes'}, inplace = True)
135
+ dailyNote = df4['Full Text'].loc[(df4['Patient_ID'] == patient) & (df4['Admission_ID']==HospitalAdmission)]
136
+ dailyNote = dailyNote.unique()
137
+
138
+ ##========= Buttons to the 5 tabs ======== Temp disabled Discharge Plan and Social Notes
139
+ ##col1, col2, col3, col4, col5 = st.columns([1,1,1,1,1]) -- to uncomment and comment below line to include discharge plan and social notes
140
+ col1, col2, col5 = st.columns([1,1,1])
141
+ col6, col7 =st.columns([2,2])
142
+ with st.container():
143
+ with col1:
144
+ btnAdmission = st.button("🏥 Admission")
145
+ if btnAdmission:
146
+ #nav_page('Admission')
147
+ inputNote = "Input Admission Note"
148
+ with col2:
149
+ btnDailyNarrative = st.button('📆Daily Narrative')
150
+ if btnDailyNarrative:
151
+ inputNote = "Input Daily Narrative Note"
152
+ # with col3:
153
+ # btnDischargePlan = st.button('🗒️Discharge Plan')
154
+ # if btnDischargePlan:
155
+ # inputNote = "Input Discharge Plan"
156
+ # with col4:
157
+ # btnSocialNotes = st.button('📝Social Notes')
158
+ # if btnSocialNotes:
159
+ # inputNote = "Input Social Note"
160
+ with col5:
161
+ btnPastHistory = st.button('📇Past History (6 Mths)')
162
+
163
+
164
+
165
+ ##========= on Past History Tab =========
166
+
167
+ with st.container():
168
+ if btnPastHistory:
169
+ with col6:
170
+ st.markdown('**No. of admission past 6 months:**')
171
+ st.markdown(countOfAdmission)
172
+
173
+ with col7:
174
+ #st.date_input('Select Admission Date') # To replace with a dropdown filter instead
175
+ #st.selectbox('Past Episodes',pastHistoryEp)
176
+ pastHistory = st.selectbox('Select Past History Admission', pastHistoryEpDate, format_func=lambda x: 'Select an option' if x == '' else x)
177
+
178
+ if btnPastHistory:
179
+
180
+ #st.write('Past History')
181
+ historyAdmission = df3.query(
182
+ "Patient_ID == @patient & CHARTDATE_HADM_ID == @pastHistory"
183
+ )
184
+ runtext = historyAdmission['hospital_course_processed'].values[0]
185
+
186
+ if not(btnPastHistory) and not(btnDailyNarrative):
187
+ runtext =st.text_area(inputNote, str(original_text2)[1:-1], height=300)
188
+
189
+
190
+
191
+
192
+ ##========= END on Past History Tab =========
193
+
194
+ ## ===== Commented out as no longer in use =====
195
+ # Extract words associated with each entity
196
+ #def genEntities(ann, entity):
197
+ # # entity colour dict
198
+ # #ent_col = {'DISEASE':'#B42D1B', 'CHEMICAL':'#F06292'}
199
+ # ent_col = {'DISEASE':'pink', 'CHEMICAL':'orange'}
200
+ # # separate into the different entities
201
+ # entities = trans_df['Class'].unique()
202
+ #
203
+ # if entity in entities:
204
+ # ent = list(trans_df[trans_df['Class']==entity]['Entity'].unique())
205
+ # entlist = ",".join(ent)
206
+ # st.markdown(f'<p style="background-color:{ent_col[entity]};color:#080808;font-size:16px;">{entlist}</p>', #unsafe_allow_html=True)
207
+
208
+
209
+ ##======================== Start of NER Tagging ========================
210
+ # ====== Old NER ======
211
+ # doc = nlp(str(original_text2))
212
+ # colors = { "DISEASE": "pink","CHEMICAL": "orange"}
213
+ # options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
214
+ # ent_html = displacy.render(doc, style="ent", options=options)
215
+ # ====== End of Old NER ======
216
+
217
+ #lemmatizing the notes to capture all forms of negation(e.g., deny: denies, denying)
218
+ def lemmatize(note, nlp):
219
+ doc = nlp(note)
220
+ lemNote = [wd.lemma_ for wd in doc]
221
+ return " ".join(lemNote)
222
+
223
+ #function to modify options for displacy NER visualization
224
+ def get_entity_options():
225
+ entities = ["DISEASE", "CHEMICAL", "NEG_ENTITY"]
226
+ colors = {'DISEASE': 'pink', 'CHEMICAL': 'orange', "NEG_ENTITY":'white'}
227
+ options = {"ents": entities, "colors": colors}
228
+ return options
229
+
230
+ #adding a new pipeline component to identify negation
231
+ def neg_model():
232
+ nlp.add_pipe('sentencizer')
233
+ nlp.add_pipe(
234
+ "negex",
235
+ config={
236
+ "chunk_prefix": ["no"],
237
+ },
238
+ last=True)
239
+ return nlp
240
+
241
+ def negation_handling(note, neg_model):
242
+ results = []
243
+ nlp = neg_model()
244
+ note = note.split(".") #sentence tokenizing based on delimeter
245
+ note = [n.strip() for n in note] #removing extra spaces at the begining and end of sentence
246
+ for t in note:
247
+ doc = nlp(t)
248
+ for e in doc.ents:
249
+ rs = str(e._.negex)
250
+ if rs == "True":
251
+ results.append(e.text)
252
+ return results
253
+
254
+ #function to identify span objects of matched negative phrases from text
255
+ def match(nlp,terms,label):
256
+ patterns = [nlp.make_doc(text) for text in terms]
257
+ matcher = PhraseMatcher(nlp.vocab)
258
+ matcher.add(label, None, *patterns)
259
+ return matcher
260
+
261
+ #replacing the labels for identified negative entities
262
+ def overwrite_ent_lbl(matcher, doc):
263
+ matches = matcher(doc)
264
+ seen_tokens = set()
265
+ new_entities = []
266
+ entities = doc.ents
267
+ for match_id, start, end in matches:
268
+ if start not in seen_tokens and end - 1 not in seen_tokens:
269
+ new_entities.append(Span(doc, start, end, label=match_id))
270
+ entities = [e for e in entities if not (e.start < end and e.end > start)]
271
+ seen_tokens.update(range(start, end))
272
+ doc.ents = tuple(entities) + tuple(new_entities)
273
+ return doc
274
+
275
+ #deduplicate repeated entities
276
+ def dedupe(items):
277
+ seen = set()
278
+ for item in items:
279
+ item = str(item).strip()
280
+ if item not in seen:
281
+ yield item
282
+ seen.add(item)
283
+
284
+ lem_clinical_note= lemmatize(runtext, nlp)
285
+ #creating a doc object using BC5CDR model
286
+ doc = nlp(lem_clinical_note)
287
+ options = get_entity_options()
288
+
289
+ #list of negative concepts from clinical note identified by negspacy
290
+ results0 = negation_handling(lem_clinical_note, neg_model)
291
+
292
+ matcher = match(nlp, results0,"NEG_ENTITY")
293
+
294
+ #doc0: new doc object with added "NEG_ENTITY label"
295
+ doc0 = overwrite_ent_lbl(matcher,doc)
296
+
297
+ #visualizing identified Named Entities in clinical input text
298
+ ent_html = displacy.render(doc0, style='ent', options=options)
299
+
300
+ ##======================== End of NER Tagging ========================
301
+
302
+ def run_model(input_text):
303
+ if model == "BertSummarizer":
304
+ output = original_text['BertSummarizer2s'].values
305
+ st.write('Summary')
306
+
307
+ elif model == "BertGPT2":
308
+ output = original_text['BertGPT2'].values
309
+ st.write('Summary')
310
+
311
+
312
+ elif model == "t5seq2eq":
313
+ output = original_text['t5seq2eq'].values
314
+ st.write('Summary')
315
+
316
+ elif model == "t5":
317
+ output = original_text['t5'].values
318
+ st.write('Summary')
319
+
320
+ elif model == "gensim":
321
+ output = original_text['gensim'].values
322
+ st.write('Summary')
323
+
324
+ elif model == "pysummarizer":
325
+ output = original_text['pysummarizer'].values
326
+ st.write('Summary')
327
+
328
+
329
+
330
+ st.success(output)
331
+
332
+
333
+ col1, col2 = st.columns([1,1])
334
+
335
+ #to not show summary and references text for Past History and Daily Narrative
336
+ if not(btnPastHistory) and not(btnDailyNarrative):
337
+ with col1:
338
+ st.button('Summarize')
339
+ run_model(runtext)
340
+ #sentences=runtext.split('.')
341
+ st.text_area('Reference text', str(reference_text), height=150)
342
+ with col2:
343
+ st.button('NER')
344
+ # ===== Adding the Disease/Chemical into a list =====
345
+ problem_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'DISEASE']))
346
+ medication_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'CHEMICAL']))
347
+ st.markdown('**CHIEF COMPLAINT:**')
348
+ st.write(str(AdmissionChiefCom)[1:-1])
349
+ st.markdown('**ADMISSION DIAGNOSIS:**')
350
+ st.markdown(str(diagnosis)[1:-1].capitalize())
351
+ st.markdown('**PROBLEM/ISSUE**')
352
+ #st.markdown(problem_entities)
353
+ st.markdown(f'<p style="background-color:PINK;color:#080808;font-size:16px;">{str(problem_entities)[1:-1]}</p>', unsafe_allow_html=True)
354
+ #genEntities(trans_df, 'DISEASE')
355
+ st.markdown('**MEDICATION**')
356
+ st.markdown(f'<p style="background-color:orange;color:#080808;font-size:16px;">{str(medication_entities)[1:-1]}</p>', unsafe_allow_html=True)
357
+ #genEntities(trans_df, 'CHEMICAL')
358
+ #st.table(trans_df)
359
+ st.markdown('**NER**')
360
+ with st.expander("See NER Details"):
361
+ st.markdown(ent_html, unsafe_allow_html=True)
362
+ if btnDailyNarrative:
363
+ with st.container():
364
+ st.markdown('Daily Progress Note (24 hour event only):')
365
+ st.markdown(str(dailyNote)[1:-1])
366
+
367
+
368
+ with st.container():
369
+ # hide_table_row_index = """
370
+ # <style>
371
+ # thead tr th:first-child {display:none}
372
+ # tbody th {display:none}
373
+ # </style>
374
+ # """
375
+ #
376
+ # # Inject CSS with Markdown
377
+ # st.markdown(hide_table_row_index, unsafe_allow_html=True)
378
+ # st.table(dailyNoteChange)
379
+ styler = dailyNoteChange.style.hide_index()
380
+ st.write(styler.to_html(), unsafe_allow_html=True)
381
+ st.markdown(f'<p style="color:#828080;font-size:12px;">*Current prototype displays only a single section within the daily progress note, could also potentially include all sections within each progress note and allow user to select the section changes the user wants to look at</p>', unsafe_allow_html=True)
382
+
383
+ #else:
384
+ if btnPastHistory:
385
+ # ===== Adding the Disease/Chemical into a list =====
386
+ problem_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'DISEASE']))
387
+ medication_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'CHEMICAL']))
388
+ st.markdown('Admission Date: ' + historyAdmission['ADMITTIME'].values[0])
389
+ st.markdown('Date of Discharge: ' + historyAdmission['DISCHTIME'].values[0])
390
+ st.markdown('Days from current admission: ' + str(historyAdmission['days_from_index'].values[0]) +' days')
391
+ #st.markdown('Summary: ')
392
+ st.markdown(f'<p style="color:#080808;font-size:16px;"><b>Summary: </b></p>', unsafe_allow_html=True)
393
+
394
+
395
+ if model == "BertSummarizer":
396
+ st.markdown(str(historyAdmission['BertSummarizer'].values[0]))
397
+ elif model == "t5seq2eq":
398
+ st.markdown(str(historyAdmission['t5seq2eq'].values[0]))
399
+ st.markdown(f'<p style="color:#080808;font-size:16px;"><b>Diagnosis: </b></p>', unsafe_allow_html=True)
400
+ st.markdown(str(historyAdmission['Diagnosis_Description'].values[0]))
401
+ st.markdown('**PROBLEM/ISSUE**')
402
+ st.markdown(f'<p style="background-color:PINK;color:#080808;font-size:16px;">{str(problem_entities)[1:-1]}</p>', unsafe_allow_html=True)
403
+ st.markdown('**MEDICATION**')
404
+ st.markdown(f'<p style="background-color:orange;color:#080808;font-size:16px;">{str(medication_entities)[1:-1]}</p>', unsafe_allow_html=True)
405
+ st.markdown('Discharge Disposition: ' + str(historyAdmission['DISCHARGE_LOCATION'].values[0]))
406
+ with st.expander('Full Discharge Summary'):
407
+ #st.write("line 1 \n line 2 \n line 3")
408
+ fulldischargesummary = historyAdmission['TEXT'].values[0]
409
+ st.write(fulldischargesummary)
cohort_cc_adm_diag.csv ADDED
The diff for this file is too large to render. See raw diff
 
cohort_past_history_12072022.csv ADDED
The diff for this file is too large to render. See raw diff
 
demo_shpi_w_rouge25Nov.csv ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ streamlit==1.13.0
2
+ pandas==1.3.5
3
+ numpy==1.20.0
4
+ regex==2022.9.13
5
+ spacy==3.2.3
6
+ scispacy==0.5.0
7
+ click==7.1.2
8
+ typer==0.4.0
9
+ https://s3-us-west-2.amazonaws.com/ai2-s2-scispacy/releases/v0.5.0/en_ner_bc5cdr_md-0.5.0.tar.gz
10
+ negspacy==1.0.3
shpi25nov.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56043b5fd95df367dfe2ffc1daf046271355884ab8387fb5f0696ef903cbfb6f
3
+ size 15879957
shpi_w_rouge21Nov.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2278ed74dd58349449d2ec031faaf2cf23bd8a37d32f80543ed410e947062fa3
3
+ size 14876249