carisackc commited on
Commit
120e1ee
·
1 Parent(s): f814aaa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -18
app.py CHANGED
@@ -12,9 +12,6 @@ from spacy.matcher import PhraseMatcher
12
  from spacy.tokens import Span
13
  #import en_ner_bc5cdr_md
14
  import re
15
- import torch
16
- from transformers import BartTokenizer, BartForConditionalGeneration
17
- from transformers import T5Tokenizer, T5ForConditionalGeneration
18
 
19
 
20
  from streamlit.components.v1 import html
@@ -212,16 +209,6 @@ if not(btnPastHistory) and not(btnDailyNarrative):
212
 
213
  ##===== BERT Summary tokenizer =====
214
 
215
- def BertSummarizer(input_text):
216
- from transformers import BigBirdTokenizer
217
- from summarizer import Summarizer
218
-
219
- bertsummarizer = Summarizer()
220
-
221
- model = Summarizer()
222
- result = model(input_text,ratio=0.4)
223
-
224
- return result
225
  ##======================== Start of NER Tagging ========================
226
  # ====== Old NER ======
227
  # doc = nlp(str(original_text2))
@@ -317,12 +304,9 @@ ent_html = displacy.render(doc0, style='ent', options=options)
317
 
318
  def run_model(input_text):
319
  if model == "BertSummarizer":
320
- # output = original_text['BertSummarizer2s'].values
321
- # st.write('Summary')
322
- output = BertSummarizer(input_text)
323
  st.write('Summary')
324
- st.success(output)
325
-
326
  # elif model == "BertGPT2":
327
  # output = original_text['BertGPT2'].values
328
  # st.write('Summary')
 
12
  from spacy.tokens import Span
13
  #import en_ner_bc5cdr_md
14
  import re
 
 
 
15
 
16
 
17
  from streamlit.components.v1 import html
 
209
 
210
  ##===== BERT Summary tokenizer =====
211
 
 
 
 
 
 
 
 
 
 
 
212
  ##======================== Start of NER Tagging ========================
213
  # ====== Old NER ======
214
  # doc = nlp(str(original_text2))
 
304
 
305
  def run_model(input_text):
306
  if model == "BertSummarizer":
307
+ output = original_text['BertSummarizer2s'].values
 
 
308
  st.write('Summary')
309
+
 
310
  # elif model == "BertGPT2":
311
  # output = original_text['BertGPT2'].values
312
  # st.write('Summary')