Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,18 +3,30 @@ from langchain_core.messages import AIMessage, HumanMessage
|
|
| 3 |
from langchain_community.document_loaders import WebBaseLoader
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
from langchain_community.vectorstores import Chroma
|
| 6 |
-
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
| 7 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 8 |
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
| 9 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 10 |
-
from
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
load_dotenv()
|
| 13 |
|
| 14 |
def get_response(user_input):
|
| 15 |
return "I dont know"
|
| 16 |
|
| 17 |
def get_vector_store_from_url(url):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
loader = WebBaseLoader(url)
|
| 19 |
document = loader.load()
|
| 20 |
|
|
@@ -23,13 +35,24 @@ def get_vector_store_from_url(url):
|
|
| 23 |
document_chunks = text_splitter.split_documents(document)
|
| 24 |
|
| 25 |
# create a vectorstore from the chunks
|
| 26 |
-
vector_store = Chroma.from_documents(document_chunks, OpenAIEmbeddings())
|
|
|
|
| 27 |
|
| 28 |
return vector_store
|
| 29 |
|
| 30 |
|
| 31 |
def get_context_retriever_chain(vector_store):
|
| 32 |
-
llm = ChatOpenAI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
retriever = vector_store.as_retriever()
|
| 35 |
|
|
|
|
| 3 |
from langchain_community.document_loaders import WebBaseLoader
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
from langchain_community.vectorstores import Chroma
|
| 6 |
+
# from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
| 7 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 8 |
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
| 9 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 10 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
| 11 |
+
from langchain_community.llms import CTransformers
|
| 12 |
+
from ctransformers import AutoModelForCausalLM
|
| 13 |
+
# from dotenv import load_dotenv
|
| 14 |
|
| 15 |
+
# load_dotenv()
|
| 16 |
|
| 17 |
def get_response(user_input):
|
| 18 |
return "I dont know"
|
| 19 |
|
| 20 |
def get_vector_store_from_url(url):
|
| 21 |
+
model_name = "BAAI/bge-large-en"
|
| 22 |
+
model_kwargs = {'device': 'cpu'}
|
| 23 |
+
encode_kwargs = {'normalize_embeddings': False}
|
| 24 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
| 25 |
+
model_name=model_name,
|
| 26 |
+
model_kwargs=model_kwargs,
|
| 27 |
+
encode_kwargs=encode_kwargs
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
loader = WebBaseLoader(url)
|
| 31 |
document = loader.load()
|
| 32 |
|
|
|
|
| 35 |
document_chunks = text_splitter.split_documents(document)
|
| 36 |
|
| 37 |
# create a vectorstore from the chunks
|
| 38 |
+
# vector_store = Chroma.from_documents(document_chunks, OpenAIEmbeddings())
|
| 39 |
+
vector_store = Chroma.from_documents(document_chunks, embeddings)
|
| 40 |
|
| 41 |
return vector_store
|
| 42 |
|
| 43 |
|
| 44 |
def get_context_retriever_chain(vector_store):
|
| 45 |
+
# llm = ChatOpenAI()
|
| 46 |
+
llm = CTransformers(
|
| 47 |
+
# model = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
|
| 48 |
+
model= "TheBloke/Llama-2-7B-Chat-GGUF",
|
| 49 |
+
model_file = "llama-2-7b-chat.Q3_K_S.gguf",
|
| 50 |
+
model_type="llama",
|
| 51 |
+
max_new_tokens = 300,
|
| 52 |
+
temperature = 0.3,
|
| 53 |
+
lib="avx2", # for CPU
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
|
| 57 |
retriever = vector_store.as_retriever()
|
| 58 |
|