import streamlit as st from transformers import LayoutLMv3ForTokenClassification, LayoutLMv3Processor from PIL import Image import torch import easyocr import re # Load the LayoutLMv3 model and processor model_name = "your-username/your-model-name" # Replace with your model repository name model = LayoutLMv3ForTokenClassification.from_pretrained(model_name) processor = LayoutLMv3Processor.from_pretrained(model_name) # Initialize EasyOCR reader for multiple languages languages = ["ru", "rs_cyrillic", "be", "bg", "uk", "mn", "en"] reader = easyocr.Reader(languages) st.title("LayoutLMv3 and EasyOCR Text Extraction") st.write("Upload an image to get text predictions using the fine-tuned LayoutLMv3 model and EasyOCR.") uploaded_file = st.file_uploader("Choose an image...", type="png") if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image.', use_column_width=True) st.write("") st.write("Classifying...") # Perform text detection with EasyOCR ocr_results = reader.readtext(uploaded_file, detail=1) words = [] boxes = [] # Define a regular expression pattern for non-alphabetic characters non_alphabet_pattern = re.compile(r'[^a-zA-Z]+') for result in ocr_results: bbox, text, _ = result filtered_text = re.sub(non_alphabet_pattern, '', text) if filtered_text: # Only append if there are alphabetic characters left words.append(filtered_text) boxes.append([ bbox[0][0], bbox[0][1], bbox[2][0], bbox[2][1] ]) # Convert to layoutlmv3 format encoding = processor(image, words=words, boxes=boxes, return_tensors="pt") # Perform inference with LayoutLMv3 with torch.no_grad(): outputs = model(**encoding) logits = outputs.logits predictions = logits.argmax(-1).squeeze().cpu().tolist() labels = encoding['labels'].squeeze().tolist() # Unnormalize bounding boxes def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] width, height = image.size token_boxes = encoding["bbox"].squeeze().tolist() true_predictions = [model.config.id2label[pred] for pred, label in zip(predictions, labels) if label != -100] true_labels = [model.config.id2label[label] for label in labels if label != -100] true_boxes = [unnormalize_box(box, width, height) for box, label in zip(token_boxes, labels) if label != -100] true_tokens = words # Display results st.write("Predicted labels:") for word, box, pred in zip(true_tokens, true_boxes, true_predictions): st.write(f"Word: {word}, Box: {box}, Prediction: {pred}") # Associate languages with their levels languages_with_levels = {} current_language = None j = 0 for i in range(len(true_labels)): if true_labels[i] == 'language': current_language = true_tokens[j] j += 1 if i + 1 < len(true_labels): languages_with_levels[current_language] = true_labels[i + 1] st.write("Languages and Levels:") for language, level in languages_with_levels.items(): st.write(f"{language}: {level}")