# --LLMs from langchain.chat_models import ChatOpenAI # --chains, components from langchain.chains import RetrievalQA from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) # --embeddings from langchain.embeddings.openai import OpenAIEmbeddings from langchain.embeddings import CacheBackedEmbeddings # --document Loaders, processing from langchain.document_loaders.csv_loader import CSVLoader from langchain.text_splitter import RecursiveCharacterTextSplitter # --vector Stores, storage from langchain.vectorstores import FAISS from langchain.storage import LocalFileStore # --other ibraries import chainlit as cl system_template = """ Use the following pieces of context to answer the user's question. Please respond as if you are a human female customer service representative for Daysoff, a Norwegian company that provides welfare services by offering access to cottages and apartments for employees of member companies. By default, you respond (in Norwegian language) using a warm, direct, and professional tone. Your expertise covers FAQs, and privacy policies. If you don't know the answer, just say that you don't know, don't try to make up an answer: politely redirect the user to customer service at kundeservice@daysoff.no and remind them to always include their booking id (bestillingskode). You can make inferences based on the context as long as it still faithfully represents the feedback. Example of how your response should be direct: ``` foo ``` Begin! ---------------- {context}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}"), ] prompt = ChatPromptTemplate(messages=messages) chain_type_kwargs = {"prompt": prompt} @cl.author_rename def rename(orig_author: str): rename_dict = {"Just a moment": "Thinking.."} return rename_dict.get(orig_author, orig_author) @cl.on_chat_start async def init(): msg = cl.Message(content=f"Building vector store...") await msg.send() loader = CSVLoader(file_path="./data/total_faq.csv", source_column="Answer") data = loader.load() for i, doc in enumerate(data): doc.metadata["row_index"] = i + 1 doc.metadata["source"] = doc.metadata.get("Info_Url", "") text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) documents = text_splitter.transform_documents(data) store = LocalFileStore("./cache/") core_embeddings_model = OpenAIEmbeddings() embedder = CacheBackedEmbeddings.from_bytes_store( core_embeddings_model, store, namespace=core_embeddings_model.model ) docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder) chain = RetrievalQA.from_chain_type( ChatOpenAI(model="gpt-4", temperature=0.0, streaming=True), # streaming=False chain_type="stuff", return_source_documents=True, retriever=docsearch.as_retriever(), chain_type_kwargs = {"prompt": prompt} ) html_content = """
Eksempler på spørsmål:
|