Update app.py
Browse files
app.py
CHANGED
@@ -28,26 +28,27 @@ import chainlit as cl
|
|
28 |
|
29 |
system_template = """
|
30 |
Use the following pieces of context to answer the user's question.
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
If
|
37 |
-
|
38 |
-
|
39 |
You can make inferences based on the context as long as it still faithfully represents the feedback.
|
40 |
|
41 |
-
Example of how your response should be direct:
|
42 |
|
43 |
```
|
44 |
-
foo
|
45 |
```
|
46 |
|
47 |
Begin!
|
48 |
----------------
|
49 |
{context}"""
|
50 |
|
|
|
51 |
messages = [
|
52 |
SystemMessagePromptTemplate.from_template(system_template),
|
53 |
HumanMessagePromptTemplate.from_template("{question}"),
|
@@ -55,28 +56,31 @@ messages = [
|
|
55 |
prompt = ChatPromptTemplate(messages=messages)
|
56 |
chain_type_kwargs = {"prompt": prompt}
|
57 |
|
|
|
|
|
58 |
@cl.author_rename
|
59 |
def rename(orig_author: str):
|
60 |
rename_dict = {"Just a moment": "Thinking.."}
|
61 |
return rename_dict.get(orig_author, orig_author)
|
62 |
|
63 |
@cl.on_chat_start
|
64 |
-
async def
|
65 |
|
66 |
-
msg = cl.Message(content=
|
67 |
await msg.send()
|
68 |
|
69 |
-
loader = CSVLoader(file_path="./data/total_faq.csv", source_column="Answer")
|
70 |
data = loader.load()
|
71 |
|
72 |
for i, doc in enumerate(data):
|
73 |
-
doc.metadata["row_index"] = i + 1
|
74 |
-
doc.metadata["source"] = doc.metadata.get("Info_Url", "")
|
75 |
|
76 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
77 |
-
|
78 |
documents = text_splitter.transform_documents(data)
|
|
|
79 |
store = LocalFileStore("./cache/")
|
|
|
80 |
core_embeddings_model = OpenAIEmbeddings()
|
81 |
embedder = CacheBackedEmbeddings.from_bytes_store(
|
82 |
core_embeddings_model, store, namespace=core_embeddings_model.model
|
@@ -84,34 +88,36 @@ async def init():
|
|
84 |
docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder)
|
85 |
|
86 |
chain = RetrievalQA.from_chain_type(
|
87 |
-
ChatOpenAI(model="gpt-4", temperature=0.0, streaming=True),
|
88 |
chain_type="stuff",
|
89 |
return_source_documents=True,
|
90 |
retriever=docsearch.as_retriever(),
|
91 |
-
chain_type_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
<li>Hvordan registrerer jeg meg som bruker?</li>
|
101 |
-
<li>Kan jeg ha med kjæledyr på hytta?</li>
|
102 |
-
<li>Adferdsmessig annonsering?</li>
|
103 |
-
<li>Hvordan blir dataene mine beskyttet?</li>
|
104 |
-
</ul>
|
105 |
-
</td>
|
106 |
-
</tr>
|
107 |
-
</table>
|
108 |
-
"""
|
109 |
-
|
110 |
-
html_element = cl.Text(content=html_content, name="HTML Table", display="inline")
|
111 |
-
await cl.Message(content=f"FAISS ready. Her er noen eksempler på spørsmål:☕️", elements=[html_element]).send()
|
112 |
-
#msg.content = f"FAISS ready. Her er noen eksempler på spørsmål:\n\n{markdown}"
|
113 |
-
#await msg.send()
|
114 |
-
|
115 |
cl.user_session.set("chain", chain)
|
116 |
|
117 |
@cl.on_message
|
@@ -156,4 +162,4 @@ async def main(message):
|
|
156 |
return
|
157 |
|
158 |
else:
|
159 |
-
await cl.Message(content=f"No sources found").send()
|
|
|
28 |
|
29 |
system_template = """
|
30 |
Use the following pieces of context to answer the user's question.
|
31 |
+
You are an AI customer service assistant for Daysoff and respond to queries in Norwegian language (by default).
|
32 |
+
Your expertise is in providing fast, accurate and on-brand answers that covers frequently asked questions about
|
33 |
+
Daysoff firmahytteordning and personvernspolicy.
|
34 |
+
|
35 |
+
If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
|
36 |
+
If the question is not about either of these two topics, politely inform them that you are tuned to only answer
|
37 |
+
questions about this and that all other queries are best directed to [email protected].
|
38 |
+
|
39 |
You can make inferences based on the context as long as it still faithfully represents the feedback.
|
40 |
|
41 |
+
Example of how your response should be, using a warm, direct, and professional tone:
|
42 |
|
43 |
```
|
44 |
+
foo
|
45 |
```
|
46 |
|
47 |
Begin!
|
48 |
----------------
|
49 |
{context}"""
|
50 |
|
51 |
+
|
52 |
messages = [
|
53 |
SystemMessagePromptTemplate.from_template(system_template),
|
54 |
HumanMessagePromptTemplate.from_template("{question}"),
|
|
|
56 |
prompt = ChatPromptTemplate(messages=messages)
|
57 |
chain_type_kwargs = {"prompt": prompt}
|
58 |
|
59 |
+
|
60 |
+
|
61 |
@cl.author_rename
|
62 |
def rename(orig_author: str):
|
63 |
rename_dict = {"Just a moment": "Thinking.."}
|
64 |
return rename_dict.get(orig_author, orig_author)
|
65 |
|
66 |
@cl.on_chat_start
|
67 |
+
async def start():
|
68 |
|
69 |
+
msg = cl.Message(content="Building vector store...")
|
70 |
await msg.send()
|
71 |
|
72 |
+
loader = CSVLoader(file_path="./data/total_faq.csv", source_column="Answer")
|
73 |
data = loader.load()
|
74 |
|
75 |
for i, doc in enumerate(data):
|
76 |
+
doc.metadata["row_index"] = i + 1
|
77 |
+
doc.metadata["source"] = doc.metadata.get("Info_Url", "")
|
78 |
|
79 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
|
|
80 |
documents = text_splitter.transform_documents(data)
|
81 |
+
|
82 |
store = LocalFileStore("./cache/")
|
83 |
+
|
84 |
core_embeddings_model = OpenAIEmbeddings()
|
85 |
embedder = CacheBackedEmbeddings.from_bytes_store(
|
86 |
core_embeddings_model, store, namespace=core_embeddings_model.model
|
|
|
88 |
docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder)
|
89 |
|
90 |
chain = RetrievalQA.from_chain_type(
|
91 |
+
ChatOpenAI(model="gpt-4", temperature=0.0, streaming=True),
|
92 |
chain_type="stuff",
|
93 |
return_source_documents=True,
|
94 |
retriever=docsearch.as_retriever(),
|
95 |
+
chain_type_kwargs={"prompt": prompt}
|
96 |
+
)
|
97 |
+
|
98 |
+
props = {
|
99 |
+
"questions": [
|
100 |
+
"Jeg har lagt inn en bestilling hva skjer videre?",
|
101 |
+
"Hva er betingelser for utleie?",
|
102 |
+
"Jeg fikk en e-post om ny bestilling, men jeg finner den ikke i systemet?",
|
103 |
+
"Med hvem deler dere mine personlige opplysninger?",
|
104 |
+
"Hvordan beskytter dere dataene mine?",
|
105 |
+
"Kan jeg ta med hund eller katt?"
|
106 |
+
]
|
107 |
+
}
|
108 |
+
|
109 |
+
custom_element = cl.CustomElement(
|
110 |
+
name="ExampleQuestions",
|
111 |
+
props=props,
|
112 |
+
display="inline"
|
113 |
)
|
114 |
|
115 |
+
await cl.Message(
|
116 |
+
content="FAISS ready. Her er noen eksempler på populære spørsmål omkring firmahytteordning og personvern: 🤔",
|
117 |
+
elements=[custom_element]
|
118 |
+
).send()
|
119 |
+
|
120 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
cl.user_session.set("chain", chain)
|
122 |
|
123 |
@cl.on_message
|
|
|
162 |
return
|
163 |
|
164 |
else:
|
165 |
+
await cl.Message(content=f"No sources found").send()
|