Last commit not found
import chainlit as cl | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.document_loaders.csv_loader import CSVLoader | |
from langchain.embeddings import CacheBackedEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.storage import LocalFileStore | |
from langchain.prompts.chat import ( | |
ChatPromptTemplate, | |
SystemMessagePromptTemplate, | |
HumanMessagePromptTemplate, | |
) | |
import chainlit as cl | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
system_template = """ | |
Use the following pieces of context to answer the user's question. | |
Please respond as if you are a customer support assistant ('kundeservice AI assistent') for Daysoff. | |
By default, you respond in Norwegian language (unless asked otherwise) | |
using a warm, direct, and professional tone. | |
Your expertise covers FAQs, and privacy policies. | |
If you don't know the answer, just say that you don't know, don't try to make up an answer and | |
politely redirect users to customer service at [email protected]. | |
You can make inferences based on the context as long as it still faithfully represents the feedback. | |
Example of how your response should be direct: | |
``` | |
foo | |
``` | |
Begin! | |
---------------- | |
{context}""" | |
messages = [ | |
SystemMessagePromptTemplate.from_template(system_template), | |
HumanMessagePromptTemplate.from_template("{question}"), | |
] | |
prompt = ChatPromptTemplate(messages=messages) | |
chain_type_kwargs = {"prompt": prompt} | |
def rename(orig_author: str): | |
rename_dict = {"RetrievalQA": "Checking FAQ for ansatte & utleiere.."} | |
return rename_dict.get(orig_author, orig_author) | |
async def init(): | |
msg = cl.Message(content=f"Building Index...") | |
await msg.send() | |
# --builds FAISS index from csv | |
loader = CSVLoader(file_path="./data/total_faq.csv", source_column="Answer") | |
data = loader.load() | |
# --adding spec. metadata------------------------------------------------------------------------------------------------- | |
for i, doc in enumerate(data): | |
doc.metadata["row_index"] = i + 1 # --row index (1-based) | |
doc.metadata["source"] = doc.metadata.get("Info_Url", "") | |
# ------------------------------------------------------------------------------------------------------------------------ | |
documents = text_splitter.transform_documents(data) | |
store = LocalFileStore("./cache/") | |
core_embeddings_model = OpenAIEmbeddings() | |
embedder = CacheBackedEmbeddings.from_bytes_store( | |
core_embeddings_model, store, namespace=core_embeddings_model.model | |
) | |
# --make async docsearch | |
docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder) | |
chain = RetrievalQA.from_chain_type( | |
ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7, streaming=True), | |
chain_type="stuff", | |
return_source_documents=True, | |
retriever=docsearch.as_retriever(), | |
chain_type_kwargs = {"prompt": prompt} | |
) | |
msg.content = f"Index built! :)" | |
await msg.send() | |
cl.user_session.set("chain", chain) | |
async def main(message): | |
chain = cl.user_session.get("chain") | |
cb = cl.AsyncLangchainCallbackHandler( | |
stream_final_answer=True, | |
answer_prefix_tokens=["FINAL", "ANSWER"] | |
) | |
cb.answer_reached = True | |
res = await chain.acall(message, callbacks=[cb]) | |
return | |
answer = res["result"] | |
source_elements = [] | |
visited_sources = set() | |
# --documents, user session | |
docs = res.get("source_documents", []) | |
metadatas = [doc.metadata for doc in docs] | |
#all_sources = [m["source"] for m in metadatas] | |
# --append source(s), specific rows only | |
for doc, metadata in zip(docs, metadatas): | |
row_index = metadata.get("row_index", -1) | |
source = metadata.get("source", "") | |
if row_index in [2, 8, 14] and source and source not in visited_sources: | |
visited_sources.add(source) | |
source_elements.append( | |
cl.Text(content="https://www.daysoff.no" + source, name="Info_Url") | |
) | |
if source_elements: | |
answer += f"\nSources: {', '.join([e.content for e in source_elements])}" | |
await cl.Message(content=answer, elements=source_elements).send() | |
return | |
else: | |
await cl.Message(content=f"No sources found").send() | |