File size: 5,740 Bytes
e7de495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff15e8
 
2b11496
 
 
8ff15e8
e7de495
 
 
 
4e3d9f3
 
 
1e4eb99
4e3d9f3
 
 
 
e7de495
 
ce8b241
e7de495
 
ce8b241
e7de495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e3d9f3
e7de495
 
 
 
 
 
 
fa183f9
3be33ef
e7de495
4a39d00
 
 
40cbae0
4a39d00
 
 
2b11496
 
 
e7de495
 
 
 
 
 
dfe4dc9
e7de495
 
 
5a1498d
e7de495
cc2a164
e7de495
 
 
 
9fac1c4
 
 
 
 
 
 
 
e7de495
 
9fac1c4
2b11496
 
e7de495
 
 
 
 
 
7803fd6
 
e7de495
 
7803fd6
2bd73c6
e7de495
 
 
 
 
fa183f9
4a39d00
e7de495
beab8b0
4a39d00
 
7803fd6
beab8b0
 
18f4e61
 
 
 
 
 
 
7803fd6
2bd73c6
18f4e61
 
2bd73c6
7803fd6
3be33ef
18f4e61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import chainlit as cl
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.embeddings import CacheBackedEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.storage import LocalFileStore
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
import chainlit as cl

# ---------------------------------------------------for backend looks, example file:----------------------------------

#with open('/spaces/camparchimedes/Daysoff-Assistant-RAQA-t1/tree/main/.chainlit/config.toml', 'r') as file:
    #content = file.read()
    #print("config.toml:", content)
# ------------------------------------------------------the end--------------------------------------------------------
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)

system_template = """
Use the following pieces of context to answer the user's question.
Please respond as if you are a human female customer service representative for Daysoff, 
a Norwegian company that provides welfare services by offering access to cottages and 
apartments for employees of member companies.
By default, you respond (in Norwegian language) using a warm, direct, and professional tone. 
Your expertise covers FAQs, and privacy policies. 
If you don't know the answer, just say that you don't know, don't try to make up an answer:
politely redirect the user to customer service at [email protected] and remind them to always 
include their booking id (bestillingskode). 
You can make inferences based on the context as long as it still faithfully represents the feedback.

Example of how your response should be direct:

```
foo      
```

Begin!
----------------
{context}"""

messages = [
    SystemMessagePromptTemplate.from_template(system_template),
    HumanMessagePromptTemplate.from_template("{question}"),
]
prompt = ChatPromptTemplate(messages=messages)
chain_type_kwargs = {"prompt": prompt}

@cl.author_rename
def rename(orig_author: str):
    rename_dict = {"RetrievalQA": "Thinking.."}
    return rename_dict.get(orig_author, orig_author)

@cl.on_chat_start
async def init():
    msg = cl.Message(content=f"Building Index...")
    await msg.send()

    # --builds FAISS index from csv
    loader = CSVLoader(file_path="./data/total_faq.csv", source_column="Answer") 
    data = loader.load()

    # --adding spec. metadata-------------------------------------------------------------------------------------------------
    for i, doc in enumerate(data):
        doc.metadata["row_index"] = i + 1  # --row index (1-based)
        doc.metadata["source"] = doc.metadata.get("Info_Url", "") 
    # ------------------------------------------------------------------------------------------------------------------------

    # --pull some q's & dotted i's for menu ==================================================================================
    questions = [doc.page_content for doc in data[:5]]
    # ========================================================================================================================
    documents = text_splitter.transform_documents(data)
    store = LocalFileStore("./cache/")
    core_embeddings_model = OpenAIEmbeddings()
    embedder = CacheBackedEmbeddings.from_bytes_store(
        core_embeddings_model, store, namespace=core_embeddings_model.model
    )
    # --make async docsearch
    docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder)

    chain = RetrievalQA.from_chain_type(
        ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7, streaming=True),
        chain_type="stuff",
        return_source_documents=True,
        retriever=docsearch.as_retriever(),
        chain_type_kwargs = {"prompt": prompt}
    )

    #menu_message = (
        #"Index built! Bare spรธr ivei..๐Ÿค“\n\n"
       # "Her er noen spรธrsmรฅl vi ofte ser iforbindelse med DaysOff firmahytteordning:\n"
       # + "\n".join([f"- {q}" for q in questions])
    #)

    #msg.content = menu_message
    msg.content = f"Index built! Bare spรธr ivei..๐Ÿค“"
    await msg.send()

    msg.content = f"Index built! Bare spรธr ivei..๐Ÿค“"
    #await msg.send()

    cl.user_session.set("chain", chain)

@cl.on_message
async def main(message):
    chain = cl.user_session.get("chain")
    cb = cl.AsyncLangchainCallbackHandler(
        stream_final_answer=True, 
        answer_prefix_tokens=["FINAL", "ANSWER"]
    )
    cb.answer_reached = True
    res = await chain.acall(message, callbacks=[cb])
    return

    answer = res["result"]
    source_elements = []
    visited_sources = set()

    # --documents, user session
    docs = res.get("source_documents", [])
    metadatas = [doc.metadata for doc in docs]
    #all_sources = [m["source"] for m in metadatas]

    # --append source(s), specific rows only
    for doc, metadata in zip(docs, metadatas):
        row_index = metadata.get("row_index", -1) 
        source = metadata.get("source", "") 

    if row_index in [2, 8, 14] and source and source not in visited_sources:
        visited_sources.add(source)
        source_elements.append(
            cl.Text(content="https://www.daysoff.no" + source, name="Info_Url")
        )

    if source_elements:
        answer += f"\nSources: {', '.join([e.content for e in source_elements])}"
        await cl.Message(content=answer, elements=source_elements).send()
        return
        
    else:
       
        await cl.Message(content=f"No sources found").send()