Spaces:
Build error
Build error
File size: 5,740 Bytes
e7de495 8ff15e8 2b11496 8ff15e8 e7de495 4e3d9f3 1e4eb99 4e3d9f3 e7de495 ce8b241 e7de495 ce8b241 e7de495 4e3d9f3 e7de495 fa183f9 3be33ef e7de495 4a39d00 40cbae0 4a39d00 2b11496 e7de495 dfe4dc9 e7de495 5a1498d e7de495 cc2a164 e7de495 9fac1c4 e7de495 9fac1c4 2b11496 e7de495 7803fd6 e7de495 7803fd6 2bd73c6 e7de495 fa183f9 4a39d00 e7de495 beab8b0 4a39d00 7803fd6 beab8b0 18f4e61 7803fd6 2bd73c6 18f4e61 2bd73c6 7803fd6 3be33ef 18f4e61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import chainlit as cl
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.embeddings import CacheBackedEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.storage import LocalFileStore
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
import chainlit as cl
# ---------------------------------------------------for backend looks, example file:----------------------------------
#with open('/spaces/camparchimedes/Daysoff-Assistant-RAQA-t1/tree/main/.chainlit/config.toml', 'r') as file:
#content = file.read()
#print("config.toml:", content)
# ------------------------------------------------------the end--------------------------------------------------------
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
system_template = """
Use the following pieces of context to answer the user's question.
Please respond as if you are a human female customer service representative for Daysoff,
a Norwegian company that provides welfare services by offering access to cottages and
apartments for employees of member companies.
By default, you respond (in Norwegian language) using a warm, direct, and professional tone.
Your expertise covers FAQs, and privacy policies.
If you don't know the answer, just say that you don't know, don't try to make up an answer:
politely redirect the user to customer service at [email protected] and remind them to always
include their booking id (bestillingskode).
You can make inferences based on the context as long as it still faithfully represents the feedback.
Example of how your response should be direct:
```
foo
```
Begin!
----------------
{context}"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
prompt = ChatPromptTemplate(messages=messages)
chain_type_kwargs = {"prompt": prompt}
@cl.author_rename
def rename(orig_author: str):
rename_dict = {"RetrievalQA": "Thinking.."}
return rename_dict.get(orig_author, orig_author)
@cl.on_chat_start
async def init():
msg = cl.Message(content=f"Building Index...")
await msg.send()
# --builds FAISS index from csv
loader = CSVLoader(file_path="./data/total_faq.csv", source_column="Answer")
data = loader.load()
# --adding spec. metadata-------------------------------------------------------------------------------------------------
for i, doc in enumerate(data):
doc.metadata["row_index"] = i + 1 # --row index (1-based)
doc.metadata["source"] = doc.metadata.get("Info_Url", "")
# ------------------------------------------------------------------------------------------------------------------------
# --pull some q's & dotted i's for menu ==================================================================================
questions = [doc.page_content for doc in data[:5]]
# ========================================================================================================================
documents = text_splitter.transform_documents(data)
store = LocalFileStore("./cache/")
core_embeddings_model = OpenAIEmbeddings()
embedder = CacheBackedEmbeddings.from_bytes_store(
core_embeddings_model, store, namespace=core_embeddings_model.model
)
# --make async docsearch
docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder)
chain = RetrievalQA.from_chain_type(
ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7, streaming=True),
chain_type="stuff",
return_source_documents=True,
retriever=docsearch.as_retriever(),
chain_type_kwargs = {"prompt": prompt}
)
#menu_message = (
#"Index built! Bare spรธr ivei..๐ค\n\n"
# "Her er noen spรธrsmรฅl vi ofte ser iforbindelse med DaysOff firmahytteordning:\n"
# + "\n".join([f"- {q}" for q in questions])
#)
#msg.content = menu_message
msg.content = f"Index built! Bare spรธr ivei..๐ค"
await msg.send()
msg.content = f"Index built! Bare spรธr ivei..๐ค"
#await msg.send()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
cb = cl.AsyncLangchainCallbackHandler(
stream_final_answer=True,
answer_prefix_tokens=["FINAL", "ANSWER"]
)
cb.answer_reached = True
res = await chain.acall(message, callbacks=[cb])
return
answer = res["result"]
source_elements = []
visited_sources = set()
# --documents, user session
docs = res.get("source_documents", [])
metadatas = [doc.metadata for doc in docs]
#all_sources = [m["source"] for m in metadatas]
# --append source(s), specific rows only
for doc, metadata in zip(docs, metadatas):
row_index = metadata.get("row_index", -1)
source = metadata.get("source", "")
if row_index in [2, 8, 14] and source and source not in visited_sources:
visited_sources.add(source)
source_elements.append(
cl.Text(content="https://www.daysoff.no" + source, name="Info_Url")
)
if source_elements:
answer += f"\nSources: {', '.join([e.content for e in source_elements])}"
await cl.Message(content=answer, elements=source_elements).send()
return
else:
await cl.Message(content=f"No sources found").send()
|