import gradio as gr import torch from transformers import BartForConditionalGeneration, BartTokenizer model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake") tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake") def genQuestion(context): inputs = tok(context, return_tensors="pt") output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9) final_output = '' all_beams = [] for i in range(4): all_beams.append([tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i]) for i in len(all_beams) final_output += all_beams[i] + "\n" return final_output iface = gr.Interface(fn=genQuestion, inputs="text", outputs="text") iface.launch()