ajs2440 commited on
Commit
ab46e65
·
1 Parent(s): 092a071

added dropdowns for models

Browse files
Files changed (1) hide show
  1. app.py +14 -5
app.py CHANGED
@@ -2,11 +2,20 @@ import gradio as gr
2
  import torch
3
  from transformers import BartForConditionalGeneration, BartTokenizer
4
 
 
 
5
 
6
- model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake")
7
- tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake")
 
 
 
 
 
 
 
 
8
 
9
- def genQuestion(context):
10
  inputs = tok(context, return_tensors="pt")
11
  output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9, num_return_sequences=4, diversity_penalty =1.0, num_beam_groups=2)
12
  final_output = ''
@@ -15,6 +24,6 @@ def genQuestion(context):
15
  final_output += [tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i] + "\n"
16
 
17
  return final_output
18
-
19
- iface = gr.Interface(fn=genQuestion, inputs="text", outputs="text")
20
  iface.launch()
 
2
  import torch
3
  from transformers import BartForConditionalGeneration, BartTokenizer
4
 
5
+ model = None
6
+ tok = None
7
 
8
+ def genQuestion(model_choice, context):
9
+ if model_choice=="interview-question-remake":
10
+ model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake")
11
+ tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake")
12
+ elif model_choice=="interview-length-tagged":
13
+ model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-length-tagged")
14
+ tok = BartTokenizer.from_pretrained("hyechanjun/interview-length-tagged")
15
+ elif model_choice=="reverse-interview-question":
16
+ model = BartForConditionalGeneration.from_pretrained("hyechanjun/reverse-interview-question")
17
+ tok = BartTokenizer.from_pretrained("hyechanjun/reverse-interview-question")
18
 
 
19
  inputs = tok(context, return_tensors="pt")
20
  output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9, num_return_sequences=4, diversity_penalty =1.0, num_beam_groups=2)
21
  final_output = ''
 
24
  final_output += [tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i] + "\n"
25
 
26
  return final_output
27
+
28
+ iface = gr.Interface(fn=genQuestion, inputs=[gr.inputs.Dropdown(["interview-question-remake", "interview-length-tagged", "reverse-interview-question"]), "text"], outputs="text")
29
  iface.launch()