Spaces:
Runtime error
Runtime error
model examples update
Browse files
app.py
CHANGED
|
@@ -14,23 +14,23 @@ examples = [
|
|
| 14 |
]
|
| 15 |
|
| 16 |
# Descriptions for each models
|
| 17 |
-
descriptions = "Interview question remake is a model that..."
|
| 18 |
|
| 19 |
# pass in Strings of model choice and input text for context
|
| 20 |
def genQuestion(model_choice, context):
|
| 21 |
-
global descriptions
|
| 22 |
if model_choice=="interview-question-remake":
|
| 23 |
model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake")
|
| 24 |
tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake")
|
| 25 |
-
descriptions = "Interview question remake is a model that..."
|
| 26 |
elif model_choice=="interview-length-tagged":
|
| 27 |
model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-length-tagged")
|
| 28 |
tok = BartTokenizer.from_pretrained("hyechanjun/interview-length-tagged")
|
| 29 |
-
descriptions = "Interview question tagged is a model that..."
|
| 30 |
elif model_choice=="reverse-interview-question":
|
| 31 |
model = BartForConditionalGeneration.from_pretrained("hyechanjun/reverse-interview-question")
|
| 32 |
tok = BartTokenizer.from_pretrained("hyechanjun/reverse-interview-question")
|
| 33 |
-
descriptions = "Reverse interview question is a model that..."
|
| 34 |
|
| 35 |
inputs = tok(context, return_tensors="pt")
|
| 36 |
output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9, num_return_sequences=4, diversity_penalty =1.0, num_beam_groups=2)
|
|
@@ -39,7 +39,7 @@ def genQuestion(model_choice, context):
|
|
| 39 |
for i in range(4):
|
| 40 |
final_output += [tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i] + "\n"
|
| 41 |
|
| 42 |
-
return final_output
|
| 43 |
|
| 44 |
iface = gr.Interface(fn=genQuestion, inputs=[gr.inputs.Dropdown(["interview-question-remake", "interview-length-tagged", "reverse-interview-question"]), "text"], examples=examples, description=descriptions, outputs="text")
|
| 45 |
iface.launch()
|
|
|
|
| 14 |
]
|
| 15 |
|
| 16 |
# Descriptions for each models
|
| 17 |
+
# descriptions = "Interview question remake is a model that..."
|
| 18 |
|
| 19 |
# pass in Strings of model choice and input text for context
|
| 20 |
def genQuestion(model_choice, context):
|
| 21 |
+
# global descriptions
|
| 22 |
if model_choice=="interview-question-remake":
|
| 23 |
model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-question-remake")
|
| 24 |
tok = BartTokenizer.from_pretrained("hyechanjun/interview-question-remake")
|
| 25 |
+
# descriptions = "Interview question remake is a model that..."
|
| 26 |
elif model_choice=="interview-length-tagged":
|
| 27 |
model = BartForConditionalGeneration.from_pretrained("hyechanjun/interview-length-tagged")
|
| 28 |
tok = BartTokenizer.from_pretrained("hyechanjun/interview-length-tagged")
|
| 29 |
+
# descriptions = "Interview question tagged is a model that..."
|
| 30 |
elif model_choice=="reverse-interview-question":
|
| 31 |
model = BartForConditionalGeneration.from_pretrained("hyechanjun/reverse-interview-question")
|
| 32 |
tok = BartTokenizer.from_pretrained("hyechanjun/reverse-interview-question")
|
| 33 |
+
# descriptions = "Reverse interview question is a model that..."
|
| 34 |
|
| 35 |
inputs = tok(context, return_tensors="pt")
|
| 36 |
output = model.generate(inputs["input_ids"], num_beams=4, max_length=64, min_length=9, num_return_sequences=4, diversity_penalty =1.0, num_beam_groups=2)
|
|
|
|
| 39 |
for i in range(4):
|
| 40 |
final_output += [tok.decode(beam, skip_special_tokens=True, clean_up_tokenization_spaces=False) for beam in output][i] + "\n"
|
| 41 |
|
| 42 |
+
return final_output
|
| 43 |
|
| 44 |
iface = gr.Interface(fn=genQuestion, inputs=[gr.inputs.Dropdown(["interview-question-remake", "interview-length-tagged", "reverse-interview-question"]), "text"], examples=examples, description=descriptions, outputs="text")
|
| 45 |
iface.launch()
|