|
import gradio as gr
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
|
import torch
|
|
|
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
|
device = 0 if torch.cuda.is_available() else -1
|
|
LANGS = ["ace_Arab", "eng_Latn", "fra_Latn", "spa_Latn"]
|
|
|
|
def translate(text, src_lang, tgt_lang):
|
|
"""
|
|
Translate the text from source lang to target lang
|
|
"""
|
|
translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang, max_length=400, device=device)
|
|
result = translation_pipeline(text)
|
|
return result[0]['translation_text']
|
|
|
|
demo = gr.Interface(
|
|
fn=translate,
|
|
inputs=[
|
|
gr.components.Textbox(label="Text"),
|
|
gr.components.Dropdown(label="Source Language", choices=LANGS),
|
|
gr.components.Dropdown(label="Target Language", choices=LANGS),
|
|
],
|
|
outputs=["text"],
|
|
examples=[["Building a translation demo with Gradio is so easy!", "eng_Latn", "spa_Latn"]],
|
|
cache_examples=False,
|
|
title="Translation Demo",
|
|
description="This demo is a simplified version of the original [NLLB-Translator](https://huggingface.co/spaces/Narrativaai/NLLB-Translator) space"
|
|
)
|
|
|
|
demo.launch()
|
|
|