|
import gradio as gr
|
|
import pypistats
|
|
from datetime import date
|
|
from dateutil.relativedelta import relativedelta
|
|
import pandas as pd
|
|
from prophet import Prophet
|
|
pd.options.plotting.backend = "plotly"
|
|
|
|
def get_forecast(lib, time):
|
|
|
|
data = pypistats.overall(lib, total=True, format="pandas")
|
|
data = data.groupby("category").get_group("with_mirrors").sort_values("date")
|
|
start_date = date.today() - relativedelta(months=int(time.split(" ")[0]))
|
|
df = data[(data['date'] > str(start_date))]
|
|
|
|
df1 = df[['date','downloads']]
|
|
df1.columns = ['ds','y']
|
|
|
|
m = Prophet()
|
|
m.fit(df1)
|
|
future = m.make_future_dataframe(periods=90)
|
|
forecast = m.predict(future)
|
|
fig1 = m.plot(forecast)
|
|
return fig1
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown(
|
|
"""
|
|
**Pypi Download Stats π with Prophet Forecasting**: see live download stats for popular open-source libraries π€ along with a 3 month forecast using Prophet. The [ source code for this Gradio demo is here](https://huggingface.co/spaces/gradio/timeseries-forecasting-with-prophet/blob/main/app.py).
|
|
""")
|
|
with gr.Row():
|
|
lib = gr.Dropdown(["pandas", "scikit-learn", "torch", "prophet"], label="Library", value="pandas")
|
|
time = gr.Dropdown(["3 months", "6 months", "9 months", "12 months"], label="Downloads over the last...", value="12 months")
|
|
|
|
plt = gr.Plot()
|
|
|
|
lib.change(get_forecast, [lib, time], plt, queue=False)
|
|
time.change(get_forecast, [lib, time], plt, queue=False)
|
|
demo.load(get_forecast, [lib, time], plt, queue=False)
|
|
|
|
demo.launch()
|
|
|