File size: 1,210 Bytes
0bd62e5 |
1 |
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: streaming_wav2vec"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch transformers "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["from transformers import pipeline\n", "import gradio as gr\n", "import time\n", "\n", "p = pipeline(\"automatic-speech-recognition\")\n", "\n", "def transcribe(audio, state=\"\"):\n", " time.sleep(2)\n", " text = p(audio)[\"text\"] # type: ignore\n", " state += text + \" \"\n", " return state, state\n", "\n", "demo = gr.Interface(\n", " fn=transcribe,\n", " inputs=[\n", " gr.Audio(sources=[\"microphone\"], type=\"filepath\", streaming=True),\n", " \"state\"\n", " ],\n", " outputs=[\n", " \"textbox\",\n", " \"state\"\n", " ],\n", " live=True\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5} |