File size: 6,064 Bytes
2c9628e
d4d6f06
2c9628e
 
 
13f10a4
 
2c9628e
404f089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c9628e
404f089
 
 
 
 
 
 
 
 
 
2c9628e
404f089
 
 
 
 
 
 
 
 
2c9628e
404f089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c9628e
404f089
 
2c9628e
404f089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c9628e
404f089
 
 
2c9628e
13f10a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c9628e
d4d6f06
 
2c9628e
 
404f089
2c9628e
13f10a4
 
 
 
 
 
2c9628e
404f089
 
d4d6f06
404f089
2c9628e
404f089
2c9628e
 
404f089
d4d6f06
2c9628e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import json
import pandas as pd
import gradio as gr
from content import *
from css import *
def model_hyperlink(link, model_name):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'

NONE_COL = "Ranking"
    
AGENT_COLS = ["Method", "Model" , "SS Easy", "SS Medium", "SS Hard", "MS Easy", "MS Meduium", "MS Hard", "Overall", NONE_COL]
AGENT_TYPES = ["str", "str", "number", "number", "number", "number", "number", "number", "number", "number" , "number"]
model_name_adic = {
    "qwen-plus": "Qwen-Plus",
    "qwen2.5-72b-instruct": "Qwen2.5-72B",
    "qwen2.5-7b-instruct": "Qwen2.5-7B",
    "qwen2.5-14b-instruct": "Qwen2.5-14B",
    "qwen2.5-32b-instruct": "Qwen2.5-32B",
    "gpt-4o": "GPT-4o",
}
method_name_adic = {
    "reflexion": "Relfexion",
    "react": "React",
    "seeker": "WebWalker",
}

rag_name_adic = {
    "kimi": "Kimi",
    "mindsearch": "MindSearch",
    "navie": "Navie RAG",
    "o1": "o1",
    "tongyi": "Tongyi",
    "wenxin": "ERNIE",
    "gemini": "Gemini",
    "gemini_search": "Gemini w/ Search",
    "doubao": "Doubao",
}
agent_ranking = []
with open("agents_result.jsonl", "r") as f:
    for line in f:
        item = json.loads(line)
        agent_ranking.append([method_name_adic[item["method"]], model_name_adic[item["model"]], item["overall"]])
agent_ranking = sorted(agent_ranking, key=lambda x: x[2], reverse=False)
ranking_dict = {}
for i, (method, model, score) in enumerate(agent_ranking):
    ranking_dict[method+model] = i

agent_df = []
with open("agents_result.jsonl", "r") as f:
    for line in f:
        item = json.loads(line)
        agent_df.append([method_name_adic[item["method"]], model_name_adic[item["model"]], 
                         f"{item['ss_easy'] * 100:.2f}",
                       f"{item['ss_medium'] * 100:.2f}",
                       f"{item['ss_hard'] * 100:.2f}",
                       f"{item['ms_easy'] * 100:.2f}",
                       f"{item['ms_medium'] * 100:.2f}",
                       f"{item['ms_hard'] * 100:.2f}",
                       f"{item['overall'] * 100:.2f}",
                       ranking_dict[method_name_adic[item["method"]] + model_name_adic[item["model"]]]])
agent_df = pd.DataFrame.from_records(agent_df, columns=AGENT_COLS)
agent_df = agent_df.sort_values(by=["Ranking"], ascending=False)
agent_df = agent_df[AGENT_COLS]

RAG_COLS = ["System", "SS Easy", "SS Medium", "SS Hard", "MS Easy", "MS Meduium", "MS Hard", "Overall", NONE_COL]
RAG_TYPES = ["str", "number", "number", "number", "number", "number", "number", "number", "number" , "number"]

rag_ranking = []
with open("rag_result.jsonl", "r") as f:
    for line in f:
        item = json.loads(line)
        rag_ranking.append([rag_name_adic[item["system"]], item["overall"]])
rag_ranking = sorted(rag_ranking, key=lambda x: x[1], reverse=False)
ranking_dict = {}
for i, (system, score) in enumerate(rag_ranking):
    ranking_dict[system] = i
rag_df = []
with open("rag_result.jsonl", "r") as f:
    for line in f:
        item = json.loads(line)
        rag_df.append([rag_name_adic[item["system"]],
                       f"{item['ss_easy'] * 100:.2f}",
                       f"{item['ss_medium'] * 100:.2f}",
                       f"{item['ss_hard'] * 100:.2f}",
                       f"{item['ms_easy'] * 100:.2f}",
                       f"{item['ms_medium'] * 100:.2f}",
                       f"{item['ms_hard'] * 100:.2f}",
                       f"{item['overall'] * 100:.2f}",
                       ranking_dict[rag_name_adic[item["system"]]]])

rag_df = pd.DataFrame.from_records(rag_df, columns=RAG_COLS)
rag_df = rag_df.sort_values(by=["Ranking"], ascending=False)
rag_df = rag_df[RAG_COLS]

deep_search_ranking = []
with open("deepsearch_result.jsonl", "r") as f:
    for line in f:
        item = json.loads(line)
        deep_search_ranking.append([item["method"], item["model"], item["overall"]])
deep_search_ranking = sorted(deep_search_ranking, key=lambda x: x[2], reverse=False)
ranking_dict = {}
for i, (method, model, score) in enumerate(deep_search_ranking):
    ranking_dict[score] = i
deep_search_df = []
with open("deepsearch_result.jsonl", "r") as f:
    for line in f:
        item = json.loads(line)
        deep_search_df.append([item["org"], item["method"], item["model"], f"{item['overall'] * 100:.2f}", item["link"],  ranking_dict[item["overall"]]])

deep_search_df = pd.DataFrame.from_records(deep_search_df, columns=["Organisation","Method", "Backbone", "Overall", "Link", NONE_COL])
deep_search_df = deep_search_df.sort_values(by=["Overall"], ascending=False)
deep_search_df = deep_search_df[["Organisation", "Method", "Backbone", "Overall", "Link", NONE_COL]]


demo = gr.Blocks(css=CUSTOM_CSS)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRO_TEXT, elem_classes="markdown-text")
    gr.Markdown(HOW_TO, elem_classes="markdown-text")
    gr.Markdown("## Leaderboard")
    with gr.Group():
        with gr.Tab("Results: Deep Search Agent 🤖🔎"):
            leaderboard_table_test = gr.components.Dataframe(
                value=deep_search_df, datatype=AGENT_TYPES, interactive=False,
                column_widths = ["10%", "18%", "18%", "10%"] 
            )
        with gr.Tab("Results: Web Traversal Agent 🤖️"):
            leaderboard_table_test = gr.components.Dataframe(
                value=agent_df, datatype=AGENT_TYPES, interactive=False,
                column_widths = ["20%"] * len(agent_df.columns)
            )
        with gr.Tab("Results: RAG-system 🔍"):
            leaderboard_table_val = gr.components.Dataframe(
                value=rag_df, datatype=RAG_TYPES, interactive=False,
                column_widths=["20%"] 
        )
    gr.Markdown("SS denotes single-source, and MS denotes multi-source. Easy, Medium, and Hard denote the difficulty level of the question.")

    gr.Markdown(CREDIT, elem_classes="markdown-text")
    gr.Markdown(CITATION, elem_classes="markdown-text")

demo.launch(share=True)