Spaces:
Running
Running
File size: 6,064 Bytes
2c9628e d4d6f06 2c9628e 13f10a4 2c9628e 404f089 2c9628e 404f089 2c9628e 404f089 2c9628e 404f089 2c9628e 404f089 2c9628e 404f089 2c9628e 404f089 2c9628e 13f10a4 2c9628e d4d6f06 2c9628e 404f089 2c9628e 13f10a4 2c9628e 404f089 d4d6f06 404f089 2c9628e 404f089 2c9628e 404f089 d4d6f06 2c9628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import json
import pandas as pd
import gradio as gr
from content import *
from css import *
def model_hyperlink(link, model_name):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
NONE_COL = "Ranking"
AGENT_COLS = ["Method", "Model" , "SS Easy", "SS Medium", "SS Hard", "MS Easy", "MS Meduium", "MS Hard", "Overall", NONE_COL]
AGENT_TYPES = ["str", "str", "number", "number", "number", "number", "number", "number", "number", "number" , "number"]
model_name_adic = {
"qwen-plus": "Qwen-Plus",
"qwen2.5-72b-instruct": "Qwen2.5-72B",
"qwen2.5-7b-instruct": "Qwen2.5-7B",
"qwen2.5-14b-instruct": "Qwen2.5-14B",
"qwen2.5-32b-instruct": "Qwen2.5-32B",
"gpt-4o": "GPT-4o",
}
method_name_adic = {
"reflexion": "Relfexion",
"react": "React",
"seeker": "WebWalker",
}
rag_name_adic = {
"kimi": "Kimi",
"mindsearch": "MindSearch",
"navie": "Navie RAG",
"o1": "o1",
"tongyi": "Tongyi",
"wenxin": "ERNIE",
"gemini": "Gemini",
"gemini_search": "Gemini w/ Search",
"doubao": "Doubao",
}
agent_ranking = []
with open("agents_result.jsonl", "r") as f:
for line in f:
item = json.loads(line)
agent_ranking.append([method_name_adic[item["method"]], model_name_adic[item["model"]], item["overall"]])
agent_ranking = sorted(agent_ranking, key=lambda x: x[2], reverse=False)
ranking_dict = {}
for i, (method, model, score) in enumerate(agent_ranking):
ranking_dict[method+model] = i
agent_df = []
with open("agents_result.jsonl", "r") as f:
for line in f:
item = json.loads(line)
agent_df.append([method_name_adic[item["method"]], model_name_adic[item["model"]],
f"{item['ss_easy'] * 100:.2f}",
f"{item['ss_medium'] * 100:.2f}",
f"{item['ss_hard'] * 100:.2f}",
f"{item['ms_easy'] * 100:.2f}",
f"{item['ms_medium'] * 100:.2f}",
f"{item['ms_hard'] * 100:.2f}",
f"{item['overall'] * 100:.2f}",
ranking_dict[method_name_adic[item["method"]] + model_name_adic[item["model"]]]])
agent_df = pd.DataFrame.from_records(agent_df, columns=AGENT_COLS)
agent_df = agent_df.sort_values(by=["Ranking"], ascending=False)
agent_df = agent_df[AGENT_COLS]
RAG_COLS = ["System", "SS Easy", "SS Medium", "SS Hard", "MS Easy", "MS Meduium", "MS Hard", "Overall", NONE_COL]
RAG_TYPES = ["str", "number", "number", "number", "number", "number", "number", "number", "number" , "number"]
rag_ranking = []
with open("rag_result.jsonl", "r") as f:
for line in f:
item = json.loads(line)
rag_ranking.append([rag_name_adic[item["system"]], item["overall"]])
rag_ranking = sorted(rag_ranking, key=lambda x: x[1], reverse=False)
ranking_dict = {}
for i, (system, score) in enumerate(rag_ranking):
ranking_dict[system] = i
rag_df = []
with open("rag_result.jsonl", "r") as f:
for line in f:
item = json.loads(line)
rag_df.append([rag_name_adic[item["system"]],
f"{item['ss_easy'] * 100:.2f}",
f"{item['ss_medium'] * 100:.2f}",
f"{item['ss_hard'] * 100:.2f}",
f"{item['ms_easy'] * 100:.2f}",
f"{item['ms_medium'] * 100:.2f}",
f"{item['ms_hard'] * 100:.2f}",
f"{item['overall'] * 100:.2f}",
ranking_dict[rag_name_adic[item["system"]]]])
rag_df = pd.DataFrame.from_records(rag_df, columns=RAG_COLS)
rag_df = rag_df.sort_values(by=["Ranking"], ascending=False)
rag_df = rag_df[RAG_COLS]
deep_search_ranking = []
with open("deepsearch_result.jsonl", "r") as f:
for line in f:
item = json.loads(line)
deep_search_ranking.append([item["method"], item["model"], item["overall"]])
deep_search_ranking = sorted(deep_search_ranking, key=lambda x: x[2], reverse=False)
ranking_dict = {}
for i, (method, model, score) in enumerate(deep_search_ranking):
ranking_dict[score] = i
deep_search_df = []
with open("deepsearch_result.jsonl", "r") as f:
for line in f:
item = json.loads(line)
deep_search_df.append([item["org"], item["method"], item["model"], f"{item['overall'] * 100:.2f}", item["link"], ranking_dict[item["overall"]]])
deep_search_df = pd.DataFrame.from_records(deep_search_df, columns=["Organisation","Method", "Backbone", "Overall", "Link", NONE_COL])
deep_search_df = deep_search_df.sort_values(by=["Overall"], ascending=False)
deep_search_df = deep_search_df[["Organisation", "Method", "Backbone", "Overall", "Link", NONE_COL]]
demo = gr.Blocks(css=CUSTOM_CSS)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRO_TEXT, elem_classes="markdown-text")
gr.Markdown(HOW_TO, elem_classes="markdown-text")
gr.Markdown("## Leaderboard")
with gr.Group():
with gr.Tab("Results: Deep Search Agent 🤖🔎"):
leaderboard_table_test = gr.components.Dataframe(
value=deep_search_df, datatype=AGENT_TYPES, interactive=False,
column_widths = ["10%", "18%", "18%", "10%"]
)
with gr.Tab("Results: Web Traversal Agent 🤖️"):
leaderboard_table_test = gr.components.Dataframe(
value=agent_df, datatype=AGENT_TYPES, interactive=False,
column_widths = ["20%"] * len(agent_df.columns)
)
with gr.Tab("Results: RAG-system 🔍"):
leaderboard_table_val = gr.components.Dataframe(
value=rag_df, datatype=RAG_TYPES, interactive=False,
column_widths=["20%"]
)
gr.Markdown("SS denotes single-source, and MS denotes multi-source. Easy, Medium, and Hard denote the difficulty level of the question.")
gr.Markdown(CREDIT, elem_classes="markdown-text")
gr.Markdown(CITATION, elem_classes="markdown-text")
demo.launch(share=True) |