File size: 8,158 Bytes
74c716c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# MIT License
#
# Copyright (c) 2023 Victor Calderon
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import logging
from typing import Dict, Optional

import numpy as np
import pandas as pd
import torch
from datasets import Dataset
from sentence_transformers import SentenceTransformer

from src.utils import default_variables as dv

__author__ = ["Victor Calderon"]
__copyright__ = ["Copyright 2023 Victor Calderon"]
__all__ = ["SemanticSearchEngine"]

logger = logging.getLogger(__name__)
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s]: %(message)s",
)
logger.setLevel(logging.INFO)

# --------------------------- CLASS DEFINITIONS -------------------------------


class SemanticSearchEngine(object):
    """
    Class object for running Semantic Search on the input dataset.
    """

    def __init__(self, **kwargs):
        """
        Class object for running Semantic Search on the input dataset.
        """
        # --- Defining variables
        # Device to use, i.e. CPU or GPU
        self.device = self._get_device()
        # Embedder model to use
        self.model = "paraphrase-mpnet-base-v2"
        # Defining the embedder
        self.embedder = self._get_embedder()

        # Corpus embeddings
        self.source_colname = kwargs.get(
            "source_colname",
            "summary",
        )
        self.embeddings_colname = kwargs.get(
            "embeddings_colname",
            dv.embeddings_colname,
        )

        # Variables used for running semantic search
        self.corpus_dataset_with_faiss_index = kwargs.get(
            "corpus_dataset_with_faiss_index"
        )

    def _get_device(self) -> str:
        """
        Method for determining the device to use.

        Returns
        ----------
        device_type : str
            Type of device to use (e.g. 'cpu' or 'cuda').

            Options:
                - ``cpu``  : Uses a CPU.
                - ``cuda`` : Uses a GPU.
        """
        # Determining the type of device to use
        device_type = "cuda" if torch.cuda.is_available() else "cpu"

        logger.info(f">> Running on a '{device_type.upper()}' device")

        return device_type

    def _get_embedder(self):
        """
        Method for extracting the Embedder model.

        Returns
        ---------
        embedder : model
            Variable corresponding to the Embeddings models.
        """
        embedder = SentenceTransformer(self.model)
        embedder.to(self.device)

        return embedder

    def generate_corpus_index_and_embeddings(
        self,
        corpus_dataset: Dataset,
    ) -> Dataset:
        """
        Method for generating the Text Embeddings and FAISS indices from
        the input dataset.

        Parameters
        ------------
        corpus_dataset : datasets.Dataset
            Dataset containing the text to use to create the text
            embeddings and FAISS indices.

        Returns
        ----------
        corpus_dataset_with_embeddings : datasets.Dataset
            Dataset containing the original data rom ``corpus_dataset``
            plus the corresponding text embeddings of the ``source_colname``
            column.
        """
        torch.set_grad_enabled(False)

        # --- Generate text embeddings for the source column
        corpus_dataset_with_embeddings = corpus_dataset.map(
            lambda corpus: {
                self.embeddings_colname: self.embedder.encode(
                    corpus[self.source_colname]
                )
            },
            batched=True,
            desc="Computing Semantic Search Embeddings",
        )

        # --- Adding FAISS index
        corpus_dataset_with_embeddings.add_faiss_index(
            column=self.embeddings_colname,
            faiss_verbose=True,
            device=None if self.device == "cpu" else 1,
        )

        return corpus_dataset_with_embeddings

    def run_semantic_search(
        self,
        query: str,
        top_n: Optional[int] = 5,
    ) -> Dict:  # sourcery skip: extract-duplicate-method
        """
        Method for running a semantic search on a query after having
        created the corpus of the text embeddings.

        Parameters
        --------------
        query : str
            Text query to use for searching the database.

        top_n : int, optional
            Variable corresponding to the 'Top N' values to return based on the
            similarity score between the input query and the corpus. This
            variable is set to ``10`` by default.

        Returns
        ---------
        match_results : dict
            Dictionary containing the metadata of each of the articles
            that were in the Top-N in terms of being most similar to the
            input query ``query``.
        """
        # --- Checking input parameters
        # 'query' - Type
        query_type_arr = (str,)
        if not isinstance(query, query_type_arr):
            msg = ">> 'query' ({}) is not a valid input type ({})".format(
                type(query), query_type_arr
            )
            logger.error(msg)
            raise TypeError(msg)
        # 'top_n' - Type
        top_n_type_arr = (int,)
        if not isinstance(top_n, top_n_type_arr):
            msg = ">> 'top_n' ({}) is not a valid input type ({})".format(
                type(top_n), top_n_type_arr
            )
            logger.error(msg)
            raise TypeError(msg)

        # 'top_n' - Value
        if top_n <= 0:
            msg = f">> 'top_n' ({top_n}) must be larger than '0'!"
            logger.error(msg)
            raise ValueError(msg)

        # --- Checking that the encoder has been indexed correctly
        if self.corpus_dataset_with_faiss_index is None:
            msg = ">>> The FAISS index was not properly set!"
            logger.error(msg)
            raise ValueError(msg)

        # --- Encode the input query and extract the embedding
        query_embedding = self.embedder.encode(query)

        # --- Extracting the top-N results
        (
            scores,
            results,
        ) = self.corpus_dataset_with_faiss_index.get_nearest_examples(
            self.embeddings_colname,
            query_embedding,
            k=top_n,
        )

        # --- Sorting from highest to lowest
        # NOTE: We need to deconstruct the 'results' to be able to organize
        # the results
        parsed_results = pd.DataFrame.from_dict(
            data=results,
            orient="columns",
        )
        parsed_results.loc[:, "relevance"] = scores

        # Sorting in descending order
        parsed_results = parsed_results.sort_values(
            by=["relevance"],
            ascending=False,
        ).reset_index(drop=True)

        # Casting data type for the 'relevance'
        parsed_results.loc[:, "relevance"] = parsed_results["relevance"].apply(
            lambda x: str(np.round(x, 5))
        )

        # Only keeping certain columns
        columns_to_keep = ["_id", "title", "relevance", "content"]

        return parsed_results[columns_to_keep].to_dict(orient="index")