Spaces:
Sleeping
Sleeping
File size: 7,636 Bytes
74c716c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# MIT License
#
# Copyright (c) 2023 Victor Calderon
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
Module that includes utilities for interacting with HuggingFace
"""
import logging
import os
from typing import Dict, Optional, Union
import pandas as pd
from datasets import Dataset, load_dataset
from huggingface_hub import HfApi
from src.utils import default_variables as dv
__all__ = ["HuggingFaceHelper"]
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logger.setLevel(level=logging.INFO)
class HuggingFaceHelper(object):
"""
Class definition for creating, interacting, and sharing Datasets.
"""
def __init__(self, **kwargs: Dict) -> None:
"""
Class definition for creating, interacting, and sharing Datasets.
"""
# Name of the HuggingFace token as stored in the user's environment
self.token_name = kwargs.get("token_name", dv.hugging_face_token_name)
self.username = kwargs.get(
"username",
os.environ.get(dv.hugging_face_username_name),
)
# HuggingFace endpoint
self.api_endpoint = "https://huggingface.co"
self.api = self._authenticate_api()
def _authenticate_api(self) -> HfApi:
"""
Method for authenticating with HuggingFace using an authentication
token.
Returns
---------
huggingface_api : huggingface_hub.hf_api.HfApi
Object corresponding to the HuggingFace API after authentication.
"""
# Check that token is part of the user's environment
if not os.environ.get(self.token_name):
msg = f">>> HuggingFace API Token '{self.token_name}' not defined!"
logger.error(msg)
raise ValueError(msg)
# Initializing API object
return HfApi(
endpoint=self.api_endpoint,
token=os.environ.get(self.token_name),
)
def convert_dataframe_to_dataset(
self,
input_df: pd.DataFrame,
) -> Dataset:
"""
Function to convert an existing DataFrame into a ``Dataset`` object
Parameters
-------------
input_df : pandas.DataFrame
Variable corresponding to the DataFrame to convert.
Returns
-----------
dataset_obj : datasets.Dataset
Dataset object with the same data as ``input_df``.
"""
return Dataset.from_pandas(df=input_df)
def get_dataset_from_hub(
self,
dataset_name: str,
username: Optional[Union[None, str]] = None,
split: Optional[Union[None, str]] = None,
) -> Dataset:
# sourcery skip: extract-duplicate-method, use-fstring-for-formatting
"""
Method for extracting the Dataset from HuggingFace.
Parameters
------------
dataset_name : str
Name of the dataset to extract from HuggingFace's Hub.
username : str, NoneType, optional
Username to use when extracting the dataset from HuggingFace Hub.
This variable is set to ``None`` by default.
split : str, NoneType, optional
Type of ``split`` to load for the Dataset. If ``None``, the
method will extract all splits. This variable is set to
``None`` by default.
Returns
--------
dataset_obj : datasets.Dataset
Variable corresponding to the dataset that was extracted
from the HuggingFace Hub.
"""
# 'dataset_name' - Type
dataset_name_type_arr = (str,)
if not isinstance(dataset_name, dataset_name_type_arr):
msg = (
">> 'dataset_name' ({}) is not a valid input type ({})".format(
type(dataset_name),
dataset_name_type_arr,
)
)
logger.error(msg)
raise TypeError(msg)
# 'username' - Type
username_type_arr = (str, type(None))
if not isinstance(username, username_type_arr):
msg = ">> 'username' ({}) is not a valid input type ({})".format(
type(username),
username_type_arr,
)
logger.error(msg)
raise TypeError(msg)
# 'split' - Type
split_type_arr = (str, type(None))
if not isinstance(split, split_type_arr):
msg = ">> 'split' ({}) is not a valid input type ({})".format(
type(split),
split_type_arr,
)
logger.error(msg)
raise TypeError(msg)
# Defining the path to the dataset in HF.
dataset_path = (
f"{username}/{dataset_name}" if username else dataset_name
)
return load_dataset(dataset_path, split=split)
def push_dataset(
self,
dataset: Dataset,
dataset_name: str,
username: Optional[Union[None, str]] = None,
): # sourcery skip: extract-duplicate-method, use-fstring-for-formatting
"""
Method for pushing an existing local Dataset to HuggingFace.
"""
# --- Check input type
# 'dataset' - Type
dataset_type_arr = (Dataset,)
if not isinstance(dataset, dataset_type_arr):
msg = ">> 'dataset' ({}) is not a valid input type ({})".format(
type(dataset),
dataset_type_arr,
)
logger.error(msg)
raise TypeError(msg)
# 'dataset_name' - Type
dataset_name_type_arr = (str,)
if not isinstance(dataset_name, dataset_name_type_arr):
msg = (
">> 'dataset_name' ({}) is not a valid input type ({})".format(
type(dataset_name),
dataset_name_type_arr,
)
)
logger.error(msg)
raise TypeError(msg)
# 'username' - Type
username_type_arr = (str, type(None))
if not isinstance(username, username_type_arr):
msg = ">> 'username' ({}) is not a valid input type ({})".format(
type(username),
username_type_arr,
)
logger.error(msg)
raise TypeError(msg)
# Defining the path to the dataset in HF.
dataset_path = (
f"{username}/{dataset_name}" if username else dataset_name
)
# Pushing dataset to HuggingFace
dataset.push_to_hub(
repo_id=dataset_path,
token=os.environ.get(self.token_name),
)
|