Spaces:
Sleeping
Sleeping
File size: 12,381 Bytes
74c716c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
# MIT License
#
# Copyright (c) 2023 Victor Calderon
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
Module that contains the class definitions for the data preparation tasks.
"""
import logging
import re
from datetime import datetime
from typing import List, Optional, Tuple, Union
import pandas as pd
from spacy.lang.en.stop_words import STOP_WORDS
from src.classes import hugging_face_utils as hf
from src.utils import default_variables as dv
from src.utils import general_utilities as gu
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
# ---------------------------- CLASS DEFINITIONS ------------------------------
# -- Defining functions that can be used for cleaning up and preparing text
class NLPPrep(object):
"""
Class object for handling the data processing of text.
"""
def __init__(self):
# Defining the corresponding stop words
self.stop_words = list(STOP_WORDS)
def _lowercase_text(self, input_string: str) -> str:
"""
Method for making the input text lowercase.
Parameters
------------
input_string : str
Text variable to lowercase.
Returns
----------
output_string : str
Lower-cased version of ``input_string``.
"""
return input_string.lower()
def _only_keep_alphanumeric(self, input_string: str) -> str:
"""
Method for only keeping alphanumerical characters in the text.
Parameters
------------
input_string : str
Text variable to filter.
Returns
----------
output_string : str
Filtered version of ``input_string`` that only contains
alphanumerical characters.
"""
regex_pattern = r"[^a-zA-z0-9\s]"
return re.sub(regex_pattern, "", input_string)
def _remove_stopwords(self, input_string: str) -> str:
"""
Method for removing stop words from the input text.
Parameters
------------
input_string : str
Text variable to filter.
Returns
----------
output_string : str
Filtered version of ``input_string`` without stop words in
the text.
"""
# Splitting the text into 'tokens'
tokens = input_string.strip().split()
return " ".join(
[word for word in tokens if word not in self.stop_words]
)
def _remove_unicode(self, input_str: str) -> str:
"""
Method for removing Unicode from the input text.
Parameters
------------
input_str : str
Text variable, from which to remove Unicode characters.
Returns
----------
string_decode : str
Filtered version of ``input_str`` without the Unicode characters.
"""
string_encode = input_str.encode("ascii", "ignore")
return string_encode.decode()
def process_text(self, input_string: str) -> str:
"""
Method for passing the input variable through NLP-based techniques
to process the text.
Parameters
------------
input_string : str
Variable corresponding to the text that will be processed.
Returns
------------
processed_string : str
Variable corresponding to the *processed* version of the input
string, after having gone through some NLP-based processing
techniques.
Notes
-----------
This function will perform the following NLP-based techniques:
1. Make the text lowercase.
2. Remove any non-alphanumeric character from the string.
3. Remove any stop words from the text.
"""
# Remove Unicode characters
processed_string = self._remove_unicode(input_string)
# Lower case the text
processed_string = self._lowercase_text(processed_string)
# Removing non-alphanumeric characters
processed_string = self._only_keep_alphanumeric(processed_string)
# Removing stop words
processed_string = self._remove_stopwords(processed_string)
return processed_string
class DatasetPrep(object):
"""
Class object for the Data Processing of the input dataset.
"""
def __init__(
self,
dataset_path: str,
**kwargs,
):
"""
Class object for the Data Processing of the input dataset.
Parameters
------------
dataset_path : str
Path / URL to the input dataset.
"""
# Path to the output dataset
self.datasets_dir = gu.get_project_paths()["data"]
# Other parameters
for colname in [
"save_to_disk",
"document_id_colname",
"title_colname",
"content_colname",
"clean_content_colname",
]:
setattr(self, colname, kwargs.get(colname, getattr(dv, colname)))
# Initializing dataset
self.dataset_path = dataset_path
self.raw_dataset = self._get_dataset()
# Extracting the number of rows and columns, and column names
(
self.n_rows,
self.n_cols,
self.columns_names,
) = self._get_columns_and_shape()
# Initializing NLP-Prep Object
self.nlp_obj = NLPPrep()
def show_params(self):
"""
Method for displaying the set of input parameters of the class.
"""
gu.show_params(
params_dict=self.__dict__,
logger=logger,
columns_to_omit=["raw_dataset"],
)
def _get_dataset(self) -> pd.DataFrame:
# sourcery skip: class-extract-method
"""
Method for extracting the dataset from the input source.
Returns
----------
raw_dataset : pandas.DataFrame
DataFrame containing the data from the input source.
"""
logger.info(f">> Extracting dataset from `{self.dataset_path}`")
# Reading in dataset
raw_dataset = pd.read_csv(self.dataset_path)
# Saving to disk, if applicable
if self.save_to_disk:
dataset_filepath = self.datasets_dir.joinpath("raw_dataset.csv")
dataset_filepath.parent.mkdir(exist_ok=True, parents=True)
raw_dataset.to_csv(dataset_filepath, header=True, index=True)
logger.info(f">> Raw dataset saved to '{str(dataset_filepath)}'")
return raw_dataset
def _get_columns_and_shape(self) -> Tuple[int, int, List]:
# sourcery skip: use-fstring-for-formatting
"""
Method for extracting the columns and information about the
raw dataset.
Returns
----------
n_rows : int
Number of rows in the original dataset.
n_cols : int
Number of columns in the original dataset.
column_names_arr : list
List of columns from the original dataset.
"""
# Number of rows and columns
n_rows, n_columns = self.raw_dataset.shape
logger.info(
">> There are '{}' rows and '{}' columns in the dataset".format(
n_rows,
n_columns,
)
)
# Column names
column_names_arr = sorted(self.raw_dataset.columns)
logger.info(
">> Columns in the dataset: \n\t{}".format(
"\n\t".join(column_names_arr)
)
)
return n_rows, n_columns, column_names_arr
def _process_text(self, input_text: str) -> str:
"""
Method for applying NLP-based techniques on an input text in order
to prepare it to be used by the embedding algorithm.
Parameters
-----------
input_text : str
Variable corresponding to the input text.
Returns
-----------
processed_text : str
Processed version of the ``input_text``.
Notes
----------
This function will perform the following NLP-based techniques:
1. Make the text lowercase.
2. Remove any non-alphanumeric character from the string.
3. Remove any stop words from the text.
"""
return self.nlp_obj.process_text(input_string=input_text)
def clean_dataset(self) -> pd.DataFrame:
"""
Method for cleaning the raw dataset and create a clean version
of the dataset.
Returns
---------
dataset_clean : pandas.DataFrame
Clean version of the input dataset, after having gone through
data-cleaning techniques.
"""
# --- Start time
logger.info(">> Data cleaning process ...")
start_time = datetime.now()
#
# --- Making a copy of the raw dataset
dataset_df = self.raw_dataset.copy()
# --- Data-cleaning techniques
# Removing duplicates
dataset_df.drop_duplicates(keep="first", inplace=True)
# Removing entries that have 'NaN' in the dataset
dataset_df.dropna(how="any", inplace=True)
# Casting proper data types
dataset_df = dataset_df.astype(str)
# Resetting the index of the dataset
dataset_df.reset_index(drop=True, inplace=True)
# Removing trailing whitespaces
for colname in [self.document_id_colname, self.title_colname]:
dataset_df.loc[:, colname] = dataset_df[colname].apply(
lambda x: x.strip()
)
# Processing content
dataset_df.loc[:, getattr(self, "clean_content_colname")] = dataset_df[
getattr(self, "content_colname")
].apply(lambda text: self.nlp_obj.process_text(text))
# --- Saving to disk, if applicable
if self.save_to_disk:
dataset_filepath = self.datasets_dir.joinpath("clean_dataset.csv")
dataset_filepath.parent.mkdir(exist_ok=True, parents=True)
dataset_df.to_csv(dataset_filepath, header=True, index=True)
logger.info(f">> Clean dataset saved to '{str(dataset_filepath)}'")
# --- End time
end_time = datetime.now()
logger.info(f">> Finished at: {end_time}")
logger.info(f">> Took: {end_time - start_time}")
logger.info(">> Data cleaning process ... DONE")
return dataset_df
def push_dataset_to_hub(
self,
dataset: pd.DataFrame,
dataset_name: str,
username: Optional[Union[None, str]] = None,
):
"""
Method for pushing the ``dataset`` to the HuggingFace's Hub.
Parameters
-------------
dataset : pandas.DataFrame
Dataset that will be pushed to HuggingFace.
dataset_name : str
Name of the dataset to use.
username : str, NoneType, optional
Us
"""
# Initializing class object
hf_obj = hf.HuggingFaceHelper()
# Transforming dataset type
hf_dataset = hf_obj.convert_dataframe_to_dataset(input_df=dataset)
# Push dataset to hub
hf_obj.push_dataset(
dataset=hf_dataset,
dataset_name=dataset_name,
username=username,
)
|