Spaces:
Sleeping
Sleeping
File size: 5,772 Bytes
74c716c 9523bcf 74c716c 9523bcf 74c716c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# MIT License
#
# Copyright (c) 2023 Victor Calderon
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import logging
from typing import Dict, Optional
from datasets import Dataset
from fastapi import Depends, FastAPI
from fastapi.responses import RedirectResponse
from huggingface_hub import hf_hub_download
from pydantic import BaseModel
from src.classes import hugging_face_utils as hf
from src.classes import semantic_search_engine as ss
from src.utils import default_variables as dv
import os
from pathlib import Path
logger = logging.getLogger(__name__)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s]: %(message)s",
)
logger.setLevel(logging.INFO)
# ------------------------------- VARIABLES -----------------------------------
APP_TITLE = "Cicero LLM Synthesizer"
APP_DESCRIPTION = f"""
The '{APP_TITLE}'is an app that will identify the top-N articles from the
Cicero database that are most similar to the user's input query.
"""
APP_VERSION = "0.1"
# ----------------------------- APP-SPECIFIC ----------------------------------
# Defining the appliation value
app = FastAPI(
title=APP_TITLE,
description=APP_DESCRIPTION,
version=APP_VERSION,
)
# -------------------------------- CLASSES ------------------------------------
# Creating directory
cache_dir = Path(".").resolve().joinpath("cache")
cache_dir.mkdir(exist_ok=True,parents=True,)
os.environ['SENTENCE_TRANSFORMERS_HOME'] = str(cache_dir)
class QueryParams(BaseModel):
input_query: str
number_articles: Optional[int] = 5
# ------------------------------- FUNCTIONS -----------------------------------
def download_dataset_and_faiss_index() -> Dataset:
"""
Function to download the corresponding dataset and the FAISS index
from HuggingFace.
Returns
-------------
dataset_with_faiss_index : datasets.Dataset
Dataset from HuggingFace with the FAISS index loaded.
"""
# --- Initializing HuggingFace API
# Object for interacting with HuggingFace
hf_obj = hf.HuggingFaceHelper()
# Defining variable names for each of the objects
faiss_index_name = f"{dv.faiss_index_name}.faiss"
dataset_name = dv.dataset_faiss_embeddings_name
username = hf_obj.username
repository_name = dv.hugging_face_repository_name
repository_id = f"{username}/{repository_name}"
repository_type = "dataset"
split_type = "train"
# --- Downloading FAISS Index
faiss_index_local_path = hf_hub_download(
repo_id=repository_id,
filename=faiss_index_name,
repo_type=repository_type,
token=hf_obj.api.token,
)
# --- Downloading Dataset
dataset_obj = hf_obj.get_dataset_from_hub(
dataset_name=dataset_name,
username=username,
split=split_type,
)
# --- Adding FAISS index to the dataset
dataset_obj.load_faiss_index(
index_name=dv.embeddings_colname,
file=faiss_index_local_path,
)
return dataset_obj
def run_semantic_search_task(query: str, number_articles: int) -> Dict:
"""
Function to run semantic search on an input query. It will return a
set of 'Top-N' articles that are most similar to the input query.
Parameters
------------
query : str
Input query to use when running the Semantic Search Engine.
number_articles : int
Number of articles to return from the Semantic Search.
Returns
----------
ranked_results : dict
Dictionary containing the ranked results from the Semantic
Search Engine.
"""
# --- Extracting dataset with FAISS index
corpus_dataset_with_faiss_index = download_dataset_and_faiss_index()
# --- Initializing Semantic Search Engine
semantic_search_obj = ss.SemanticSearchEngine(
corpus_dataset_with_faiss_index=corpus_dataset_with_faiss_index
)
# --- Running search on Top-N results
return semantic_search_obj.run_semantic_search(
query=query,
top_n=number_articles,
)
# -------------------------------- ROUTES -------------------------------------
@app.get("/", include_in_schema=False)
async def docs_redirect():
return RedirectResponse(url="/docs")
# ---- Semantic Search
@app.post("/predict")
async def run_semantic_search(query_params: QueryParams = Depends()):
"""
Function to run semantic search on the an input query.
Parameters
--------------
query : str
Input query to use when running the Semantic Search Engine.
number_articles : int
Number of articles to return from the Semantic Search.
"""
return run_semantic_search_task(
query=query_params.input_query,
number_articles=query_params.number_articles,
)
|