test
Browse files
app.py
CHANGED
@@ -1,38 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
-
#import gradio.helpers
|
4 |
import torch
|
5 |
import os
|
6 |
from glob import glob
|
7 |
-
from pathlib import Path
|
8 |
from typing import Optional
|
9 |
-
|
10 |
from diffusers import StableVideoDiffusionPipeline
|
11 |
-
from diffusers.utils import
|
12 |
from PIL import Image
|
13 |
-
|
14 |
-
import uuid
|
15 |
import random
|
16 |
-
from
|
17 |
-
|
18 |
-
from moviepy import VideoFileClip, concatenate_videoclips
|
19 |
-
|
20 |
-
#gradio.helpers.CACHED_FOLDER = '/data/cache'
|
21 |
|
|
|
22 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
23 |
-
"stabilityai/stable-video-diffusion-img2vid-xt",
|
|
|
|
|
24 |
)
|
25 |
pipe.to("cuda")
|
26 |
-
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
27 |
-
#pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
28 |
|
|
|
29 |
max_64_bit_int = 2**63 - 1
|
30 |
|
|
|
31 |
def resize_image(image, output_size=(1024, 576)):
|
32 |
-
"""
|
33 |
-
Resizes/crops the image to match a target resolution without
|
34 |
-
distorting aspect ratio.
|
35 |
-
"""
|
36 |
target_aspect = output_size[0] / output_size[1]
|
37 |
image_aspect = image.width / image.height
|
38 |
|
@@ -41,52 +30,35 @@ def resize_image(image, output_size=(1024, 576)):
|
|
41 |
new_width = int(new_height * image_aspect)
|
42 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
43 |
left = (new_width - output_size[0]) / 2
|
44 |
-
top = 0
|
45 |
right = (new_width + output_size[0]) / 2
|
46 |
-
bottom = output_size[1]
|
47 |
else:
|
48 |
new_width = output_size[0]
|
49 |
new_height = int(new_width / image_aspect)
|
50 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
51 |
-
left = 0
|
52 |
top = (new_height - output_size[1]) / 2
|
53 |
-
right = output_size[0]
|
54 |
bottom = (new_height + output_size[1]) / 2
|
55 |
|
56 |
-
|
57 |
-
return cropped_image
|
58 |
|
59 |
-
#
|
60 |
def combine_videos(video_paths, output_path="outputs/final_long_video.mp4"):
|
61 |
-
""
|
62 |
-
Concatenate a list of MP4 videos into one MP4.
|
63 |
-
"""
|
64 |
clips = [VideoFileClip(vp) for vp in video_paths]
|
65 |
final_clip = concatenate_videoclips(clips, method="compose")
|
66 |
final_clip.write_videofile(output_path, codec="libx264", fps=clips[0].fps, audio=False)
|
67 |
return output_path
|
68 |
|
69 |
-
#
|
70 |
-
# We create a helper function that returns both the frames and the snippet path
|
71 |
def generate_snippet(
|
72 |
-
init_image: Image,
|
73 |
-
seed: int,
|
74 |
-
motion_bucket_id: int,
|
75 |
-
fps_id: int,
|
76 |
-
decoding_t: int = 3,
|
77 |
-
device: str = "cuda",
|
78 |
-
output_folder: str = "outputs"
|
79 |
):
|
80 |
-
"""
|
81 |
-
Generate a short snippet from `init_image` using the pipeline.
|
82 |
-
Returns: (frames, video_path)
|
83 |
-
"""
|
84 |
generator = torch.manual_seed(seed)
|
85 |
os.makedirs(output_folder, exist_ok=True)
|
86 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
87 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
88 |
|
89 |
-
# Generate frames
|
90 |
result = pipe(
|
91 |
init_image,
|
92 |
decode_chunk_size=decoding_t,
|
@@ -95,118 +67,62 @@ def generate_snippet(
|
|
95 |
noise_aug_strength=0.1,
|
96 |
num_frames=25
|
97 |
)
|
98 |
-
frames = result.frames[0]
|
99 |
-
|
100 |
-
# Save snippet
|
101 |
export_to_video(frames, video_path, fps=fps_id)
|
102 |
|
103 |
-
return frames, video_path
|
104 |
|
105 |
-
|
106 |
def sample_long(
|
107 |
image: Image,
|
108 |
seed: Optional[int] = 42,
|
109 |
randomize_seed: bool = True,
|
110 |
motion_bucket_id: int = 127,
|
111 |
fps_id: int = 6,
|
112 |
-
|
113 |
-
|
114 |
-
device: str = "cuda",
|
115 |
-
output_folder: str = "outputs",
|
116 |
-
progress=gr.Progress(track_tqdm=True)
|
117 |
):
|
118 |
-
"""
|
119 |
-
Generate 5 snippets in a row. Each new snippet starts from the last frame of the previous snippet.
|
120 |
-
Return the path to the final, concatenated MP4.
|
121 |
-
"""
|
122 |
if image.mode == "RGBA":
|
123 |
image = image.convert("RGB")
|
124 |
-
|
125 |
if randomize_seed:
|
126 |
seed = random.randint(0, max_64_bit_int)
|
127 |
-
torch.manual_seed(seed)
|
128 |
|
129 |
snippet_paths = []
|
130 |
current_image = image
|
131 |
-
|
132 |
-
|
133 |
-
frames, snippet_path = generate_snippet(
|
134 |
init_image=current_image,
|
135 |
seed=seed,
|
136 |
motion_bucket_id=motion_bucket_id,
|
137 |
fps_id=fps_id,
|
138 |
decoding_t=decoding_t,
|
139 |
-
device=device,
|
140 |
output_folder=output_folder
|
141 |
)
|
142 |
snippet_paths.append(snippet_path)
|
143 |
|
144 |
-
|
145 |
-
last_frame = frames[-1] # PIL image
|
146 |
-
current_image = last_frame
|
147 |
-
|
148 |
-
# Optional: re-seed each time if you like randomness in every snippet
|
149 |
-
# Otherwise, keep the same seed for a more cohesive “style”
|
150 |
-
# If you want random seeds each snippet, uncomment:
|
151 |
-
# seed = random.randint(0, max_64_bit_int)
|
152 |
-
|
153 |
-
# Concatenate all snippets
|
154 |
-
final_video_path = os.path.join(output_folder, "final_long_video.mp4")
|
155 |
-
final_video_path = combine_videos(snippet_paths, output_path=final_video_path)
|
156 |
-
|
157 |
-
return final_video_path, seed
|
158 |
-
|
159 |
|
|
|
160 |
with gr.Blocks() as demo:
|
161 |
-
gr.Markdown(
|
162 |
-
|
163 |
-
[paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets),
|
164 |
-
[stability's ui waitlist](https://stability.ai/contact))
|
165 |
-
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)):
|
166 |
-
Generate a longer video by chaining together multiple short snippets.
|
167 |
-
''')
|
168 |
-
|
169 |
with gr.Row():
|
170 |
with gr.Column():
|
171 |
-
image = gr.Image(label="Upload
|
172 |
-
generate_btn = gr.Button("Generate Long Video
|
173 |
-
|
174 |
-
|
175 |
-
with gr.Accordion("Advanced
|
176 |
-
seed = gr.Slider(
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
minimum=0,
|
181 |
-
maximum=max_64_bit_int,
|
182 |
-
step=1
|
183 |
-
)
|
184 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
185 |
-
motion_bucket_id = gr.Slider(
|
186 |
-
label="Motion bucket id",
|
187 |
-
info="Controls how much motion to add/remove from the image",
|
188 |
-
value=127,
|
189 |
-
minimum=1,
|
190 |
-
maximum=255
|
191 |
-
)
|
192 |
-
fps_id = gr.Slider(
|
193 |
-
label="Frames per second",
|
194 |
-
info="The length of your video in seconds will be 25/fps",
|
195 |
-
value=6,
|
196 |
-
minimum=5,
|
197 |
-
maximum=30
|
198 |
-
)
|
199 |
-
|
200 |
-
# Automatically resize on image upload
|
201 |
-
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
202 |
|
203 |
-
# NEW: Generate a *long* video composed of 5 short snippets
|
204 |
generate_btn.click(
|
205 |
-
|
206 |
-
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id],
|
207 |
-
outputs=[
|
208 |
-
api_name="video"
|
209 |
)
|
210 |
|
211 |
if __name__ == "__main__":
|
212 |
-
demo.launch(share=True
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import torch
|
3 |
import os
|
4 |
from glob import glob
|
|
|
5 |
from typing import Optional
|
|
|
6 |
from diffusers import StableVideoDiffusionPipeline
|
7 |
+
from diffusers.utils import export_to_video
|
8 |
from PIL import Image
|
|
|
|
|
9 |
import random
|
10 |
+
from moviepy.editor import VideoFileClip, concatenate_videoclips
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Load the Stable Video Diffusion Pipeline
|
13 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
14 |
+
"stabilityai/stable-video-diffusion-img2vid-xt",
|
15 |
+
torch_dtype=torch.float16,
|
16 |
+
variant="fp16"
|
17 |
)
|
18 |
pipe.to("cuda")
|
|
|
|
|
19 |
|
20 |
+
# Maximum seed value
|
21 |
max_64_bit_int = 2**63 - 1
|
22 |
|
23 |
+
# Resize and crop image to desired resolution
|
24 |
def resize_image(image, output_size=(1024, 576)):
|
|
|
|
|
|
|
|
|
25 |
target_aspect = output_size[0] / output_size[1]
|
26 |
image_aspect = image.width / image.height
|
27 |
|
|
|
30 |
new_width = int(new_height * image_aspect)
|
31 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
32 |
left = (new_width - output_size[0]) / 2
|
|
|
33 |
right = (new_width + output_size[0]) / 2
|
34 |
+
top, bottom = 0, output_size[1]
|
35 |
else:
|
36 |
new_width = output_size[0]
|
37 |
new_height = int(new_width / image_aspect)
|
38 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
39 |
+
left, right = 0, output_size[0]
|
40 |
top = (new_height - output_size[1]) / 2
|
|
|
41 |
bottom = (new_height + output_size[1]) / 2
|
42 |
|
43 |
+
return resized_image.crop((left, top, right, bottom))
|
|
|
44 |
|
45 |
+
# Combine multiple video snippets into a single video
|
46 |
def combine_videos(video_paths, output_path="outputs/final_long_video.mp4"):
|
47 |
+
os.makedirs("outputs", exist_ok=True)
|
|
|
|
|
48 |
clips = [VideoFileClip(vp) for vp in video_paths]
|
49 |
final_clip = concatenate_videoclips(clips, method="compose")
|
50 |
final_clip.write_videofile(output_path, codec="libx264", fps=clips[0].fps, audio=False)
|
51 |
return output_path
|
52 |
|
53 |
+
# Generate a video snippet from an input image
|
|
|
54 |
def generate_snippet(
|
55 |
+
init_image: Image, seed: int, motion_bucket_id: int, fps_id: int, decoding_t: int, output_folder: str
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
):
|
|
|
|
|
|
|
|
|
57 |
generator = torch.manual_seed(seed)
|
58 |
os.makedirs(output_folder, exist_ok=True)
|
59 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
60 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
61 |
|
|
|
62 |
result = pipe(
|
63 |
init_image,
|
64 |
decode_chunk_size=decoding_t,
|
|
|
67 |
noise_aug_strength=0.1,
|
68 |
num_frames=25
|
69 |
)
|
70 |
+
frames = result.frames[0]
|
|
|
|
|
71 |
export_to_video(frames, video_path, fps=fps_id)
|
72 |
|
73 |
+
return frames[-1], video_path
|
74 |
|
75 |
+
# Generate a long video composed of 5 short snippets
|
76 |
def sample_long(
|
77 |
image: Image,
|
78 |
seed: Optional[int] = 42,
|
79 |
randomize_seed: bool = True,
|
80 |
motion_bucket_id: int = 127,
|
81 |
fps_id: int = 6,
|
82 |
+
decoding_t: int = 3,
|
83 |
+
output_folder: str = "outputs"
|
|
|
|
|
|
|
84 |
):
|
|
|
|
|
|
|
|
|
85 |
if image.mode == "RGBA":
|
86 |
image = image.convert("RGB")
|
|
|
87 |
if randomize_seed:
|
88 |
seed = random.randint(0, max_64_bit_int)
|
|
|
89 |
|
90 |
snippet_paths = []
|
91 |
current_image = image
|
92 |
+
for _ in range(5):
|
93 |
+
current_image, snippet_path = generate_snippet(
|
|
|
94 |
init_image=current_image,
|
95 |
seed=seed,
|
96 |
motion_bucket_id=motion_bucket_id,
|
97 |
fps_id=fps_id,
|
98 |
decoding_t=decoding_t,
|
|
|
99 |
output_folder=output_folder
|
100 |
)
|
101 |
snippet_paths.append(snippet_path)
|
102 |
|
103 |
+
return combine_videos(snippet_paths), seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
# Build the Gradio interface
|
106 |
with gr.Blocks() as demo:
|
107 |
+
gr.Markdown("### Stable Video Diffusion - Generate a Long Video")
|
108 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
with gr.Row():
|
110 |
with gr.Column():
|
111 |
+
image = gr.Image(label="Upload an image", type="pil")
|
112 |
+
generate_btn = gr.Button("Generate Long Video")
|
113 |
+
video_output = gr.Video()
|
114 |
+
|
115 |
+
with gr.Accordion("Advanced Options", open=False):
|
116 |
+
seed = gr.Slider(0, max_64_bit_int, value=42, step=1, label="Seed")
|
117 |
+
randomize_seed = gr.Checkbox(value=True, label="Randomize Seed")
|
118 |
+
motion_bucket_id = gr.Slider(1, 255, value=127, step=1, label="Motion Bucket ID")
|
119 |
+
fps_id = gr.Slider(5, 30, value=6, step=1, label="Frames Per Second")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
|
|
121 |
generate_btn.click(
|
122 |
+
sample_long,
|
123 |
+
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id],
|
124 |
+
outputs=[video_output, seed]
|
|
|
125 |
)
|
126 |
|
127 |
if __name__ == "__main__":
|
128 |
+
demo.launch(share=True)
|