app.py
CHANGED
@@ -3,7 +3,6 @@ import spaces
|
|
3 |
#import gradio.helpers
|
4 |
import torch
|
5 |
import os
|
6 |
-
import shutil
|
7 |
from glob import glob
|
8 |
from pathlib import Path
|
9 |
from typing import Optional
|
@@ -18,40 +17,19 @@ from huggingface_hub import hf_hub_download
|
|
18 |
|
19 |
#gradio.helpers.CACHED_FOLDER = '/data/cache'
|
20 |
|
21 |
-
# OPTIONAL: Clear caches at startup to free space
|
22 |
-
hf_cache = os.path.expanduser("~/.cache/huggingface")
|
23 |
-
torch_cache = os.path.expanduser("~/.cache/torch")
|
24 |
-
if os.path.exists(hf_cache):
|
25 |
-
shutil.rmtree(hf_cache)
|
26 |
-
if os.path.exists(torch_cache):
|
27 |
-
shutil.rmtree(torch_cache)
|
28 |
-
|
29 |
-
# Configure ZeroGPU to use memory instead of disk
|
30 |
-
from spaces.zero.config import Config
|
31 |
-
Config.zerogpu_offload_dir = None # Disable disk offloading to prevent disk space issues
|
32 |
-
|
33 |
# Load the pipeline with authentication token
|
34 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
35 |
"stabilityai/stable-video-diffusion-img2vid-xt",
|
36 |
torch_dtype=torch.float16,
|
37 |
variant="fp16",
|
38 |
-
use_auth_token=os.getenv("HUGGINGFACE_TOKEN") # Fetch the token from environment if set
|
39 |
)
|
40 |
pipe.to("cuda")
|
|
|
|
|
41 |
|
42 |
max_64_bit_int = 2**63 - 1
|
43 |
|
44 |
-
|
45 |
-
"""
|
46 |
-
Remove old video files to prevent using all disk space.
|
47 |
-
Keeps the most recent <keep> files.
|
48 |
-
"""
|
49 |
-
files = sorted(glob(os.path.join(output_folder, "*.mp4")), key=os.path.getmtime)
|
50 |
-
if len(files) > keep:
|
51 |
-
for old_file in files[:-keep]:
|
52 |
-
os.remove(old_file)
|
53 |
-
|
54 |
-
@spaces.GPU(duration=250)
|
55 |
def sample(
|
56 |
image: Image,
|
57 |
seed: Optional[int] = 42,
|
@@ -76,75 +54,62 @@ def sample(
|
|
76 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
77 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
78 |
|
79 |
-
|
80 |
-
frames = pipe(
|
81 |
-
image,
|
82 |
-
decode_chunk_size=decoding_t,
|
83 |
-
generator=generator,
|
84 |
-
motion_bucket_id=motion_bucket_id,
|
85 |
-
noise_aug_strength=0.1,
|
86 |
-
num_frames=10 # reduced from 25
|
87 |
-
).frames[0]
|
88 |
-
|
89 |
export_to_video(frames, video_path, fps=fps_id)
|
90 |
torch.manual_seed(seed)
|
91 |
-
|
92 |
-
# Clean up old videos to prevent filling disk
|
93 |
-
clean_outputs(output_folder, keep=2)
|
94 |
|
95 |
return video_path, seed
|
96 |
|
97 |
def resize_image(image, output_size=(1024, 576)):
|
98 |
# Calculate aspect ratios
|
99 |
-
target_aspect = output_size[0] / output_size[1]
|
100 |
-
image_aspect = image.width / image.height
|
101 |
|
102 |
# Resize then crop if the original image is larger
|
103 |
if image_aspect > target_aspect:
|
|
|
104 |
new_height = output_size[1]
|
105 |
new_width = int(new_height * image_aspect)
|
106 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
107 |
left = (new_width - output_size[0]) / 2
|
108 |
top = 0
|
109 |
right = (new_width + output_size[0]) / 2
|
110 |
bottom = output_size[1]
|
111 |
else:
|
|
|
112 |
new_width = output_size[0]
|
113 |
new_height = int(new_width / image_aspect)
|
114 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
115 |
left = 0
|
116 |
top = (new_height - output_size[1]) / 2
|
117 |
right = output_size[0]
|
118 |
bottom = (new_height + output_size[1]) / 2
|
119 |
|
|
|
120 |
cropped_image = resized_image.crop((left, top, right, bottom))
|
121 |
return cropped_image
|
122 |
|
123 |
with gr.Blocks() as demo:
|
124 |
-
|
125 |
-
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
# Generate with sample() function
|
142 |
-
generate_btn.click(
|
143 |
-
fn=sample,
|
144 |
-
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id],
|
145 |
-
outputs=[video, seed],
|
146 |
-
api_name="video"
|
147 |
-
)
|
148 |
|
149 |
if __name__ == "__main__":
|
150 |
-
demo.
|
|
|
|
3 |
#import gradio.helpers
|
4 |
import torch
|
5 |
import os
|
|
|
6 |
from glob import glob
|
7 |
from pathlib import Path
|
8 |
from typing import Optional
|
|
|
17 |
|
18 |
#gradio.helpers.CACHED_FOLDER = '/data/cache'
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Load the pipeline with authentication token
|
21 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
22 |
"stabilityai/stable-video-diffusion-img2vid-xt",
|
23 |
torch_dtype=torch.float16,
|
24 |
variant="fp16",
|
|
|
25 |
)
|
26 |
pipe.to("cuda")
|
27 |
+
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
28 |
+
#pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
29 |
|
30 |
max_64_bit_int = 2**63 - 1
|
31 |
|
32 |
+
@spaces.GPU(duration=120)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def sample(
|
34 |
image: Image,
|
35 |
seed: Optional[int] = 42,
|
|
|
54 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
55 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
56 |
|
57 |
+
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
export_to_video(frames, video_path, fps=fps_id)
|
59 |
torch.manual_seed(seed)
|
|
|
|
|
|
|
60 |
|
61 |
return video_path, seed
|
62 |
|
63 |
def resize_image(image, output_size=(1024, 576)):
|
64 |
# Calculate aspect ratios
|
65 |
+
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
66 |
+
image_aspect = image.width / image.height # Aspect ratio of the original image
|
67 |
|
68 |
# Resize then crop if the original image is larger
|
69 |
if image_aspect > target_aspect:
|
70 |
+
# Resize the image to match the target height, maintaining aspect ratio
|
71 |
new_height = output_size[1]
|
72 |
new_width = int(new_height * image_aspect)
|
73 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
74 |
+
# Calculate coordinates for cropping
|
75 |
left = (new_width - output_size[0]) / 2
|
76 |
top = 0
|
77 |
right = (new_width + output_size[0]) / 2
|
78 |
bottom = output_size[1]
|
79 |
else:
|
80 |
+
# Resize the image to match the target width, maintaining aspect ratio
|
81 |
new_width = output_size[0]
|
82 |
new_height = int(new_width / image_aspect)
|
83 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
84 |
+
# Calculate coordinates for cropping
|
85 |
left = 0
|
86 |
top = (new_height - output_size[1]) / 2
|
87 |
right = output_size[0]
|
88 |
bottom = (new_height + output_size[1]) / 2
|
89 |
|
90 |
+
# Crop the image
|
91 |
cropped_image = resized_image.crop((left, top, right, bottom))
|
92 |
return cropped_image
|
93 |
|
94 |
with gr.Blocks() as demo:
|
95 |
+
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
|
96 |
+
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
|
97 |
+
''')
|
98 |
+
with gr.Row():
|
99 |
+
with gr.Column():
|
100 |
+
image = gr.Image(label="Upload your image", type="pil")
|
101 |
+
generate_btn = gr.Button("Generate")
|
102 |
+
video = gr.Video()
|
103 |
+
with gr.Accordion("Advanced options", open=False):
|
104 |
+
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
105 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
106 |
+
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
107 |
+
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
|
108 |
+
|
109 |
+
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
110 |
+
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
|
111 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
if __name__ == "__main__":
|
114 |
+
#demo.queue(max_size=20, api_open=False)
|
115 |
+
demo.launch(share=True, show_api=False)
|