testsson / app.py
cakemus's picture
.
b67e239
raw
history blame
4.36 kB
import gradio as gr
import torch
import os
from glob import glob
from typing import Optional
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import export_to_video
from PIL import Image
import random
from moviepy import VideoFileClip, concatenate_videoclips
# Load the Stable Video Diffusion Pipeline
pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt",
torch_dtype=torch.float16,
variant="fp16"
)
pipe.to("cuda")
# Maximum seed value
max_64_bit_int = 2**63 - 1
# Resize and crop image to desired resolution
def resize_image(image, output_size=(1024, 576)):
target_aspect = output_size[0] / output_size[1]
image_aspect = image.width / image.height
if image_aspect > target_aspect:
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - output_size[0]) / 2
right = (new_width + output_size[0]) / 2
top, bottom = 0, output_size[1]
else:
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
left, right = 0, output_size[0]
top = (new_height - output_size[1]) / 2
bottom = (new_height + output_size[1]) / 2
return resized_image.crop((left, top, right, bottom))
# Combine multiple video snippets into a single video
def combine_videos(video_paths, output_path="outputs/final_long_video.mp4"):
os.makedirs("outputs", exist_ok=True)
clips = [VideoFileClip(vp) for vp in video_paths]
final_clip = concatenate_videoclips(clips, method="compose")
final_clip.write_videofile(output_path, codec="libx264", fps=clips[0].fps, audio=False)
return output_path
# Generate a video snippet from an input image
def generate_snippet(
init_image: Image, seed: int, motion_bucket_id: int, fps_id: int, decoding_t: int, output_folder: str
):
generator = torch.manual_seed(seed)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
result = pipe(
init_image,
decode_chunk_size=decoding_t,
generator=generator,
motion_bucket_id=motion_bucket_id,
noise_aug_strength=0.1,
num_frames=25
)
frames = result.frames[0]
export_to_video(frames, video_path, fps=fps_id)
return frames[-1], video_path
# Generate a long video composed of 5 short snippets
def sample_long(
image: Image,
seed: Optional[int] = 42,
randomize_seed: bool = True,
motion_bucket_id: int = 127,
fps_id: int = 6,
decoding_t: int = 3,
output_folder: str = "outputs"
):
if image.mode == "RGBA":
image = image.convert("RGB")
if randomize_seed:
seed = random.randint(0, max_64_bit_int)
snippet_paths = []
current_image = image
for _ in range(5):
current_image, snippet_path = generate_snippet(
init_image=current_image,
seed=seed,
motion_bucket_id=motion_bucket_id,
fps_id=fps_id,
decoding_t=decoding_t,
output_folder=output_folder
)
snippet_paths.append(snippet_path)
return combine_videos(snippet_paths), seed
# Build the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("### Stable Video Diffusion - Generate a Long Video")
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload an image", type="pil")
generate_btn = gr.Button("Generate Long Video")
video_output = gr.Video()
with gr.Accordion("Advanced Options", open=False):
seed = gr.Slider(0, max_64_bit_int, value=42, step=1, label="Seed")
randomize_seed = gr.Checkbox(value=True, label="Randomize Seed")
motion_bucket_id = gr.Slider(1, 255, value=127, step=1, label="Motion Bucket ID")
fps_id = gr.Slider(5, 30, value=6, step=1, label="Frames Per Second")
generate_btn.click(
sample_long,
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id],
outputs=[video_output, seed]
)
if __name__ == "__main__":
demo.launch(share=True)