|
import gradio as gr |
|
import torch |
|
import os |
|
from glob import glob |
|
from typing import Optional |
|
from diffusers import StableVideoDiffusionPipeline |
|
from diffusers.utils import export_to_video |
|
from PIL import Image |
|
import random |
|
from moviepy import VideoFileClip, concatenate_videoclips |
|
|
|
|
|
pipe = StableVideoDiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-video-diffusion-img2vid-xt", |
|
torch_dtype=torch.float16, |
|
variant="fp16" |
|
) |
|
pipe.to("cuda") |
|
|
|
|
|
max_64_bit_int = 2**63 - 1 |
|
|
|
|
|
def resize_image(image, output_size=(1024, 576)): |
|
target_aspect = output_size[0] / output_size[1] |
|
image_aspect = image.width / image.height |
|
|
|
if image_aspect > target_aspect: |
|
new_height = output_size[1] |
|
new_width = int(new_height * image_aspect) |
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
left = (new_width - output_size[0]) / 2 |
|
right = (new_width + output_size[0]) / 2 |
|
top, bottom = 0, output_size[1] |
|
else: |
|
new_width = output_size[0] |
|
new_height = int(new_width / image_aspect) |
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
left, right = 0, output_size[0] |
|
top = (new_height - output_size[1]) / 2 |
|
bottom = (new_height + output_size[1]) / 2 |
|
|
|
return resized_image.crop((left, top, right, bottom)) |
|
|
|
|
|
def combine_videos(video_paths, output_path="outputs/final_long_video.mp4"): |
|
os.makedirs("outputs", exist_ok=True) |
|
clips = [VideoFileClip(vp) for vp in video_paths] |
|
final_clip = concatenate_videoclips(clips, method="compose") |
|
final_clip.write_videofile(output_path, codec="libx264", fps=clips[0].fps, audio=False) |
|
return output_path |
|
|
|
|
|
def generate_snippet( |
|
init_image: Image, seed: int, motion_bucket_id: int, fps_id: int, decoding_t: int, output_folder: str |
|
): |
|
generator = torch.manual_seed(seed) |
|
os.makedirs(output_folder, exist_ok=True) |
|
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) |
|
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") |
|
|
|
result = pipe( |
|
init_image, |
|
decode_chunk_size=decoding_t, |
|
generator=generator, |
|
motion_bucket_id=motion_bucket_id, |
|
noise_aug_strength=0.1, |
|
num_frames=25 |
|
) |
|
frames = result.frames[0] |
|
export_to_video(frames, video_path, fps=fps_id) |
|
|
|
return frames[-1], video_path |
|
|
|
|
|
def sample_long( |
|
image: Image, |
|
seed: Optional[int] = 42, |
|
randomize_seed: bool = True, |
|
motion_bucket_id: int = 127, |
|
fps_id: int = 6, |
|
decoding_t: int = 3, |
|
output_folder: str = "outputs" |
|
): |
|
if image.mode == "RGBA": |
|
image = image.convert("RGB") |
|
if randomize_seed: |
|
seed = random.randint(0, max_64_bit_int) |
|
|
|
snippet_paths = [] |
|
current_image = image |
|
for _ in range(5): |
|
current_image, snippet_path = generate_snippet( |
|
init_image=current_image, |
|
seed=seed, |
|
motion_bucket_id=motion_bucket_id, |
|
fps_id=fps_id, |
|
decoding_t=decoding_t, |
|
output_folder=output_folder |
|
) |
|
snippet_paths.append(snippet_path) |
|
|
|
return combine_videos(snippet_paths), seed |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("### Stable Video Diffusion - Generate a Long Video") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="Upload an image", type="pil") |
|
generate_btn = gr.Button("Generate Long Video") |
|
video_output = gr.Video() |
|
|
|
with gr.Accordion("Advanced Options", open=False): |
|
seed = gr.Slider(0, max_64_bit_int, value=42, step=1, label="Seed") |
|
randomize_seed = gr.Checkbox(value=True, label="Randomize Seed") |
|
motion_bucket_id = gr.Slider(1, 255, value=127, step=1, label="Motion Bucket ID") |
|
fps_id = gr.Slider(5, 30, value=6, step=1, label="Frames Per Second") |
|
|
|
generate_btn.click( |
|
sample_long, |
|
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], |
|
outputs=[video_output, seed] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |
|
|