Spaces:
Sleeping
Sleeping
File size: 6,858 Bytes
fe3e74d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import torch
import torch.nn as nn
class Image2DResBlockWithTV(nn.Module):
def __init__(self, dim, tdim, vdim):
super().__init__()
norm = lambda c: nn.GroupNorm(8, c)
self.time_embed = nn.Conv2d(tdim, dim, 1, 1)
self.view_embed = nn.Conv2d(vdim, dim, 1, 1)
self.conv = nn.Sequential(
norm(dim),
nn.SiLU(True),
nn.Conv2d(dim, dim, 3, 1, 1),
norm(dim),
nn.SiLU(True),
nn.Conv2d(dim, dim, 3, 1, 1),
)
def forward(self, x, t, v):
return x+self.conv(x+self.time_embed(t)+self.view_embed(v))
class NoisyTargetViewEncoder(nn.Module):
def __init__(self, time_embed_dim, viewpoint_dim, run_dim=16, output_dim=8):
super().__init__()
self.init_conv = nn.Conv2d(4, run_dim, 3, 1, 1)
self.out_conv0 = Image2DResBlockWithTV(run_dim, time_embed_dim, viewpoint_dim)
self.out_conv1 = Image2DResBlockWithTV(run_dim, time_embed_dim, viewpoint_dim)
self.out_conv2 = Image2DResBlockWithTV(run_dim, time_embed_dim, viewpoint_dim)
self.final_out = nn.Sequential(
nn.GroupNorm(8, run_dim),
nn.SiLU(True),
nn.Conv2d(run_dim, output_dim, 3, 1, 1)
)
def forward(self, x, t, v):
B, DT = t.shape
t = t.view(B, DT, 1, 1)
B, DV = v.shape
v = v.view(B, DV, 1, 1)
x = self.init_conv(x)
x = self.out_conv0(x, t, v)
x = self.out_conv1(x, t, v)
x = self.out_conv2(x, t, v)
x = self.final_out(x)
return x
class SpatialUpTimeBlock(nn.Module):
def __init__(self, x_in_dim, t_in_dim, out_dim):
super().__init__()
norm_act = lambda c: nn.GroupNorm(8, c)
self.t_conv = nn.Conv3d(t_in_dim, x_in_dim, 1, 1) # 16
self.norm = norm_act(x_in_dim)
self.silu = nn.SiLU(True)
self.conv = nn.ConvTranspose3d(x_in_dim, out_dim, kernel_size=3, padding=1, output_padding=1, stride=2)
def forward(self, x, t):
x = x + self.t_conv(t)
return self.conv(self.silu(self.norm(x)))
class SpatialTimeBlock(nn.Module):
def __init__(self, x_in_dim, t_in_dim, out_dim, stride):
super().__init__()
norm_act = lambda c: nn.GroupNorm(8, c)
self.t_conv = nn.Conv3d(t_in_dim, x_in_dim, 1, 1) # 16
self.bn = norm_act(x_in_dim)
self.silu = nn.SiLU(True)
self.conv = nn.Conv3d(x_in_dim, out_dim, 3, stride=stride, padding=1)
def forward(self, x, t):
x = x + self.t_conv(t)
return self.conv(self.silu(self.bn(x)))
class SpatialTime3DNet(nn.Module):
def __init__(self, time_dim=256, input_dim=128, dims=(32, 64, 128, 256)):
super().__init__()
d0, d1, d2, d3 = dims
dt = time_dim
self.init_conv = nn.Conv3d(input_dim, d0, 3, 1, 1) # 32
self.conv0 = SpatialTimeBlock(d0, dt, d0, stride=1)
self.conv1 = SpatialTimeBlock(d0, dt, d1, stride=2)
self.conv2_0 = SpatialTimeBlock(d1, dt, d1, stride=1)
self.conv2_1 = SpatialTimeBlock(d1, dt, d1, stride=1)
self.conv3 = SpatialTimeBlock(d1, dt, d2, stride=2)
self.conv4_0 = SpatialTimeBlock(d2, dt, d2, stride=1)
self.conv4_1 = SpatialTimeBlock(d2, dt, d2, stride=1)
self.conv5 = SpatialTimeBlock(d2, dt, d3, stride=2)
self.conv6_0 = SpatialTimeBlock(d3, dt, d3, stride=1)
self.conv6_1 = SpatialTimeBlock(d3, dt, d3, stride=1)
self.conv7 = SpatialUpTimeBlock(d3, dt, d2)
self.conv8 = SpatialUpTimeBlock(d2, dt, d1)
self.conv9 = SpatialUpTimeBlock(d1, dt, d0)
def forward(self, x, t):
B, C = t.shape
t = t.view(B, C, 1, 1, 1)
x = self.init_conv(x)
conv0 = self.conv0(x, t)
x = self.conv1(conv0, t)
x = self.conv2_0(x, t)
conv2 = self.conv2_1(x, t)
x = self.conv3(conv2, t)
x = self.conv4_0(x, t)
conv4 = self.conv4_1(x, t)
x = self.conv5(conv4, t)
x = self.conv6_0(x, t)
x = self.conv6_1(x, t)
x = conv4 + self.conv7(x, t)
x = conv2 + self.conv8(x, t)
x = conv0 + self.conv9(x, t)
return x
class FrustumTVBlock(nn.Module):
def __init__(self, x_dim, t_dim, v_dim, out_dim, stride):
super().__init__()
norm_act = lambda c: nn.GroupNorm(8, c)
self.t_conv = nn.Conv3d(t_dim, x_dim, 1, 1) # 16
self.v_conv = nn.Conv3d(v_dim, x_dim, 1, 1) # 16
self.bn = norm_act(x_dim)
self.silu = nn.SiLU(True)
self.conv = nn.Conv3d(x_dim, out_dim, 3, stride=stride, padding=1)
def forward(self, x, t, v):
x = x + self.t_conv(t) + self.v_conv(v)
return self.conv(self.silu(self.bn(x)))
class FrustumTVUpBlock(nn.Module):
def __init__(self, x_dim, t_dim, v_dim, out_dim):
super().__init__()
norm_act = lambda c: nn.GroupNorm(8, c)
self.t_conv = nn.Conv3d(t_dim, x_dim, 1, 1) # 16
self.v_conv = nn.Conv3d(v_dim, x_dim, 1, 1) # 16
self.norm = norm_act(x_dim)
self.silu = nn.SiLU(True)
self.conv = nn.ConvTranspose3d(x_dim, out_dim, kernel_size=3, padding=1, output_padding=1, stride=2)
def forward(self, x, t, v):
x = x + self.t_conv(t) + self.v_conv(v)
return self.conv(self.silu(self.norm(x)))
class FrustumTV3DNet(nn.Module):
def __init__(self, in_dim, t_dim, v_dim, dims=(32, 64, 128, 256)):
super().__init__()
self.conv0 = nn.Conv3d(in_dim, dims[0], 3, 1, 1) # 32
self.conv1 = FrustumTVBlock(dims[0], t_dim, v_dim, dims[1], 2)
self.conv2 = FrustumTVBlock(dims[1], t_dim, v_dim, dims[1], 1)
self.conv3 = FrustumTVBlock(dims[1], t_dim, v_dim, dims[2], 2)
self.conv4 = FrustumTVBlock(dims[2], t_dim, v_dim, dims[2], 1)
self.conv5 = FrustumTVBlock(dims[2], t_dim, v_dim, dims[3], 2)
self.conv6 = FrustumTVBlock(dims[3], t_dim, v_dim, dims[3], 1)
self.up0 = FrustumTVUpBlock(dims[3], t_dim, v_dim, dims[2])
self.up1 = FrustumTVUpBlock(dims[2], t_dim, v_dim, dims[1])
self.up2 = FrustumTVUpBlock(dims[1], t_dim, v_dim, dims[0])
def forward(self, x, t, v):
B,DT = t.shape
t = t.view(B,DT,1,1,1)
B,DV = v.shape
v = v.view(B,DV,1,1,1)
b, _, d, h, w = x.shape
x0 = self.conv0(x)
x1 = self.conv2(self.conv1(x0, t, v), t, v)
x2 = self.conv4(self.conv3(x1, t, v), t, v)
x3 = self.conv6(self.conv5(x2, t, v), t, v)
x2 = self.up0(x3, t, v) + x2
x1 = self.up1(x2, t, v) + x1
x0 = self.up2(x1, t, v) + x0
return {w: x0, w//2: x1, w//4: x2, w//8: x3}
|