File size: 30,713 Bytes
fe3e74d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c0d385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe3e74d
f679b0c
fe3e74d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f679b0c
fe3e74d
 
 
 
 
f679b0c
fe3e74d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f679b0c
fe3e74d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f679b0c
fe3e74d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01a5b8c
fe3e74d
f679b0c
fe3e74d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f679b0c
fe3e74d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f679b0c
fe3e74d
 
 
 
 
 
 
f679b0c
fe3e74d
 
 
 
 
 
 
 
 
 
 
f679b0c
 
 
 
 
 
0c0d385
f679b0c
 
 
0c0d385
f679b0c
fe3e74d
f679b0c
 
fe3e74d
 
 
01a5b8c
fe3e74d
 
 
 
 
f679b0c
fe3e74d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f679b0c
fe3e74d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
from pathlib import Path

import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from skimage.io import imsave
from torch.optim.lr_scheduler import LambdaLR
from tqdm import tqdm

from ldm.base_utils import read_pickle, concat_images_list
from ldm.models.diffusion.sync_dreamer_utils import get_warp_coordinates, create_target_volume
from ldm.models.diffusion.sync_dreamer_network import NoisyTargetViewEncoder, SpatialTime3DNet, FrustumTV3DNet
from ldm.modules.diffusionmodules.util import make_ddim_timesteps, timestep_embedding
from ldm.modules.encoders.modules import FrozenCLIPImageEmbedder
from ldm.util import instantiate_from_config

def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self

def disable_training_module(module: nn.Module):
    module = module.eval()
    module.train = disabled_train
    for para in module.parameters():
        para.requires_grad = False
    return module

def repeat_to_batch(tensor, B, VN):
    t_shape = tensor.shape
    ones = [1 for _ in range(len(t_shape)-1)]
    tensor_new = tensor.view(B,1,*t_shape[1:]).repeat(1,VN,*ones).view(B*VN,*t_shape[1:])
    return tensor_new

class UNetWrapper(nn.Module):
    def __init__(self, diff_model_config, drop_conditions=False, drop_scheme='default', use_zero_123=True):
        super().__init__()
        self.diffusion_model = instantiate_from_config(diff_model_config)
        self.drop_conditions = drop_conditions
        self.drop_scheme=drop_scheme
        self.use_zero_123 = use_zero_123


    def drop(self, cond, mask):
        shape = cond.shape
        B = shape[0]
        cond = mask.view(B,*[1 for _ in range(len(shape)-1)]) * cond
        return cond

    def get_trainable_parameters(self):
        return self.diffusion_model.get_trainable_parameters()

    def get_drop_scheme(self, B, device):
        if self.drop_scheme=='default':
            random = torch.rand(B, dtype=torch.float32, device=device)
            drop_clip = (random > 0.15) & (random <= 0.2)
            drop_volume = (random > 0.1) & (random <= 0.15)
            drop_concat = (random > 0.05) & (random <= 0.1)
            drop_all = random <= 0.05
        else:
            raise NotImplementedError
        return drop_clip, drop_volume, drop_concat, drop_all

    def forward(self, x, t, clip_embed, volume_feats, x_concat, is_train=False):
        """

        @param x:             B,4,H,W
        @param t:             B,
        @param clip_embed:    B,M,768
        @param volume_feats:  B,C,D,H,W
        @param x_concat:      B,C,H,W
        @param is_train:
        @return:
        """
        if self.drop_conditions and is_train:
            B = x.shape[0]
            drop_clip, drop_volume, drop_concat, drop_all = self.get_drop_scheme(B, x.device)

            clip_mask = 1.0 - (drop_clip | drop_all).float()
            clip_embed = self.drop(clip_embed, clip_mask)

            volume_mask = 1.0 - (drop_volume | drop_all).float()
            for k, v in volume_feats.items():
                volume_feats[k] = self.drop(v, mask=volume_mask)

            concat_mask = 1.0 - (drop_concat | drop_all).float()
            x_concat = self.drop(x_concat, concat_mask)

        if self.use_zero_123:
            # zero123 does not multiply this when encoding, maybe a bug for zero123
            first_stage_scale_factor = 0.18215
            x_concat_ = x_concat * 1.0
            x_concat_[:, :4] = x_concat_[:, :4] / first_stage_scale_factor
        else:
            x_concat_ = x_concat

        x = torch.cat([x, x_concat_], 1)
        pred = self.diffusion_model(x, t, clip_embed, source_dict=volume_feats)
        return pred

    def predict_with_decomposed_unconditional_scales(self, x, t, clip_embed, volume_feats, x_concat, unconditional_scales):
        x_ = torch.cat([x] * 3, 0)
        t_ = torch.cat([t] * 3, 0)
        clip_embed_ = torch.cat([clip_embed, torch.zeros_like(clip_embed), clip_embed], 0)
        x_concat_ = torch.cat([x_concat, torch.zeros_like(x_concat), x_concat*4], 0)

        v_ = {}
        for k, v in volume_feats.items():
            v_[k] = torch.cat([v, v, torch.zeros_like(v)], 0)

        if self.use_zero_123:
            # zero123 does not multiply this when encoding, maybe a bug for zero123
            first_stage_scale_factor = 0.18215
            x_concat_[:, :4] = x_concat_[:, :4] / first_stage_scale_factor
        x_ = torch.cat([x_, x_concat_], 1)
        s, s_uc1, s_uc2 = self.diffusion_model(x_, t_, clip_embed_, source_dict=v_).chunk(3)
        s = s + unconditional_scales[0] * (s - s_uc1) + unconditional_scales[1] * (s - s_uc2)
        return s


class SpatialVolumeNet(nn.Module):
    def __init__(self, time_dim, view_dim, view_num,
                 input_image_size=256, frustum_volume_depth=48,
                 spatial_volume_size=32, spatial_volume_length=0.5,
                 frustum_volume_length=0.86603 # sqrt(3)/2
                 ):
        super().__init__()
        self.target_encoder = NoisyTargetViewEncoder(time_dim, view_dim, output_dim=16)
        self.spatial_volume_feats = SpatialTime3DNet(input_dim=16 * view_num, time_dim=time_dim, dims=(64, 128, 256, 512))
        self.frustum_volume_feats = FrustumTV3DNet(64, time_dim, view_dim, dims=(64, 128, 256, 512))

        self.frustum_volume_length = frustum_volume_length
        self.input_image_size = input_image_size
        self.spatial_volume_size = spatial_volume_size
        self.spatial_volume_length = spatial_volume_length

        self.frustum_volume_size = self.input_image_size // 8
        self.frustum_volume_depth = frustum_volume_depth
        self.time_dim = time_dim
        self.view_dim = view_dim
        self.default_origin_depth = 1.5 # our rendered images are 1.5 away from the origin, we assume camera is 1.5 away from the origin

    def construct_spatial_volume(self, x, t_embed, v_embed, target_poses, target_Ks):
        """
        @param x:            B,N,4,H,W
        @param t_embed:      B,t_dim
        @param v_embed:      B,N,v_dim
        @param target_poses: N,3,4
        @param target_Ks:    N,3,3
        @return:
        """
        B, N, _, H, W = x.shape
        V = self.spatial_volume_size
        device = x.device

        spatial_volume_verts = torch.linspace(-self.spatial_volume_length, self.spatial_volume_length, V, dtype=torch.float32, device=device)
        spatial_volume_verts = torch.stack(torch.meshgrid(spatial_volume_verts, spatial_volume_verts, spatial_volume_verts), -1)
        spatial_volume_verts = spatial_volume_verts.reshape(1, V ** 3, 3)[:, :, (2, 1, 0)]
        spatial_volume_verts = spatial_volume_verts.view(1, V, V, V, 3).permute(0, 4, 1, 2, 3).repeat(B, 1, 1, 1, 1)

        # encode source features
        t_embed_ = t_embed.view(B, 1, self.time_dim).repeat(1, N, 1).view(B, N, self.time_dim)
        # v_embed_ = v_embed.view(1, N, self.view_dim).repeat(B, 1, 1).view(B, N, self.view_dim)
        v_embed_ = v_embed
        target_Ks = target_Ks.unsqueeze(0).repeat(B, 1, 1, 1)
        target_poses = target_poses.unsqueeze(0).repeat(B, 1, 1, 1)

        # extract 2D image features
        spatial_volume_feats = []
        # project source features
        for ni in range(0, N):
            pose_source_ = target_poses[:, ni]
            K_source_ = target_Ks[:, ni]
            x_ = self.target_encoder(x[:, ni], t_embed_[:, ni], v_embed_[:, ni])
            C = x_.shape[1]

            coords_source = get_warp_coordinates(spatial_volume_verts, x_.shape[-1], self.input_image_size, K_source_, pose_source_).view(B, V, V * V, 2)
            unproj_feats_ = F.grid_sample(x_, coords_source, mode='bilinear', padding_mode='zeros', align_corners=True)
            unproj_feats_ = unproj_feats_.view(B, C, V, V, V)
            spatial_volume_feats.append(unproj_feats_)

        spatial_volume_feats = torch.stack(spatial_volume_feats, 1) # B,N,C,V,V,V
        N = spatial_volume_feats.shape[1]
        spatial_volume_feats = spatial_volume_feats.view(B, N*C, V, V, V)

        spatial_volume_feats = self.spatial_volume_feats(spatial_volume_feats, t_embed)  # b,64,32,32,32
        return spatial_volume_feats

    def construct_view_frustum_volume(self, spatial_volume, t_embed, v_embed, poses, Ks, target_indices):
        """
        @param spatial_volume:    B,C,V,V,V
        @param t_embed:           B,t_dim
        @param v_embed:           B,N,v_dim
        @param poses:             N,3,4
        @param Ks:                N,3,3
        @param target_indices:    B,TN
        @return: B*TN,C,H,W
        """
        B, TN = target_indices.shape
        H, W = self.frustum_volume_size, self.frustum_volume_size
        D = self.frustum_volume_depth
        V = self.spatial_volume_size

        near = torch.ones(B * TN, 1, H, W, dtype=spatial_volume.dtype, device=spatial_volume.device) * self.default_origin_depth - self.frustum_volume_length
        far = torch.ones(B * TN, 1, H, W, dtype=spatial_volume.dtype, device=spatial_volume.device) * self.default_origin_depth + self.frustum_volume_length

        target_indices = target_indices.view(B*TN) # B*TN
        poses_ = poses[target_indices] # B*TN,3,4
        Ks_ = Ks[target_indices] # B*TN,3,4
        volume_xyz, volume_depth = create_target_volume(D, self.frustum_volume_size, self.input_image_size, poses_, Ks_, near, far) # B*TN,3 or 1,D,H,W

        volume_xyz_ = volume_xyz / self.spatial_volume_length  # since the spatial volume is constructed in [-spatial_volume_length,spatial_volume_length]
        volume_xyz_ = volume_xyz_.permute(0, 2, 3, 4, 1)  # B*TN,D,H,W,3
        spatial_volume_ = spatial_volume.unsqueeze(1).repeat(1, TN, 1, 1, 1, 1).view(B * TN, -1, V, V, V)
        volume_feats = F.grid_sample(spatial_volume_, volume_xyz_, mode='bilinear', padding_mode='zeros', align_corners=True) # B*TN,C,D,H,W

        v_embed_ = v_embed[torch.arange(B)[:,None], target_indices.view(B,TN)].view(B*TN, -1) # B*TN
        t_embed_ = t_embed.unsqueeze(1).repeat(1,TN,1).view(B*TN,-1)
        volume_feats_dict = self.frustum_volume_feats(volume_feats, t_embed_, v_embed_)
        return volume_feats_dict, volume_depth

class SyncMultiviewDiffusion(pl.LightningModule):
    def __init__(self, unet_config, scheduler_config,
                 finetune_unet=False, finetune_projection=True,
                 view_num=16, image_size=256,
                 cfg_scale=3.0, output_num=8, batch_view_num=4,
                 drop_conditions=False, drop_scheme='default',
                 clip_image_encoder_path="/apdcephfs/private_rondyliu/projects/clip/ViT-L-14.pt"):
        super().__init__()

        self.finetune_unet = finetune_unet
        self.finetune_projection = finetune_projection

        self.view_num = view_num
        self.viewpoint_dim = 4
        self.output_num = output_num
        self.image_size = image_size

        self.batch_view_num = batch_view_num
        self.cfg_scale = cfg_scale

        self.clip_image_encoder_path = clip_image_encoder_path

        self._init_time_step_embedding()
        self._init_first_stage()
        self._init_schedule()
        self._init_multiview()
        self._init_clip_image_encoder()
        self._init_clip_projection()

        self.spatial_volume = SpatialVolumeNet(self.time_embed_dim, self.viewpoint_dim, self.view_num)
        self.model = UNetWrapper(unet_config, drop_conditions=drop_conditions, drop_scheme=drop_scheme)
        self.scheduler_config = scheduler_config

        latent_size = image_size//8
        self.ddim = SyncDDIMSampler(self, 200, "uniform", 1.0, latent_size=latent_size)

    def _init_clip_projection(self):
        self.cc_projection = nn.Linear(772, 768)
        nn.init.eye_(list(self.cc_projection.parameters())[0][:768, :768])
        nn.init.zeros_(list(self.cc_projection.parameters())[1])
        self.cc_projection.requires_grad_(True)

        if not self.finetune_projection:
            disable_training_module(self.cc_projection)

    def _init_multiview(self):
        K, azs, _, _, poses = read_pickle(f'meta_info/camera-{self.view_num}.pkl')
        default_image_size = 256
        ratio = self.image_size/default_image_size
        K = np.diag([ratio,ratio,1]) @ K
        K = torch.from_numpy(K.astype(np.float32)) # [3,3]
        K = K.unsqueeze(0).repeat(self.view_num,1,1)        # N,3,3
        poses = torch.from_numpy(poses.astype(np.float32))  # N,3,4
        self.register_buffer('poses', poses)
        self.register_buffer('Ks', K)
        azs = (azs + np.pi) % (np.pi * 2) - np.pi # scale to [-pi,pi] and the index=0 has az=0
        self.register_buffer('azimuth', torch.from_numpy(azs.astype(np.float32)))

    def get_viewpoint_embedding(self, batch_size, elevation_ref):
        """
        @param batch_size:
        @param elevation_ref: B
        @return:
        """
        azimuth_input = self.azimuth[0].unsqueeze(0) # 1
        azimuth_target = self.azimuth # N
        elevation_input = -elevation_ref # note that zero123 use a negative elevation here!!!
        elevation_target = -np.deg2rad(30)
        d_e = elevation_target - elevation_input # B
        N = self.azimuth.shape[0]
        B = batch_size
        d_e = d_e.unsqueeze(1).repeat(1, N)
        d_a = azimuth_target - azimuth_input # N
        d_a = d_a.unsqueeze(0).repeat(B, 1)
        d_z = torch.zeros_like(d_a)
        embedding = torch.stack([d_e, torch.sin(d_a), torch.cos(d_a), d_z], -1) # B,N,4
        return embedding

    def _init_first_stage(self):
        first_stage_config={
            "target": "ldm.models.autoencoder.AutoencoderKL",
            "params": {
                "embed_dim": 4,
                "monitor": "val/rec_loss",
                "ddconfig":{
                  "double_z": True,
                  "z_channels": 4,
                  "resolution": self.image_size,
                  "in_channels": 3,
                  "out_ch": 3,
                  "ch": 128,
                  "ch_mult": [1,2,4,4],
                  "num_res_blocks": 2,
                  "attn_resolutions": [],
                  "dropout": 0.0
                },
                "lossconfig": {"target": "torch.nn.Identity"},
            }
        }
        self.first_stage_scale_factor = 0.18215
        self.first_stage_model = instantiate_from_config(first_stage_config)
        self.first_stage_model = disable_training_module(self.first_stage_model)

    def _init_clip_image_encoder(self):
        self.clip_image_encoder = FrozenCLIPImageEmbedder(model=self.clip_image_encoder_path)
        self.clip_image_encoder = disable_training_module(self.clip_image_encoder)

    def _init_schedule(self):
        self.num_timesteps = 1000
        linear_start = 0.00085
        linear_end = 0.0120
        num_timesteps = 1000
        betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, num_timesteps, dtype=torch.float32) ** 2 # T
        assert betas.shape[0] == self.num_timesteps

        # all in float64 first
        alphas = 1. - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0) # T
        alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0)
        posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) # T
        posterior_log_variance_clipped = torch.log(torch.clamp(posterior_variance, min=1e-20))
        posterior_log_variance_clipped = torch.clamp(posterior_log_variance_clipped, min=-10)

        self.register_buffer("betas", betas.float())
        self.register_buffer("alphas", alphas.float())
        self.register_buffer("alphas_cumprod", alphas_cumprod.float())
        self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod).float())
        self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1 - alphas_cumprod).float())
        self.register_buffer("posterior_variance", posterior_variance.float())
        self.register_buffer('posterior_log_variance_clipped', posterior_log_variance_clipped.float())

    def _init_time_step_embedding(self):
        self.time_embed_dim = 256
        self.time_embed = nn.Sequential(
            nn.Linear(self.time_embed_dim, self.time_embed_dim),
            nn.SiLU(True),
            nn.Linear(self.time_embed_dim, self.time_embed_dim),
        )

    def encode_first_stage(self, x, sample=True):
        with torch.no_grad():
            posterior = self.first_stage_model.encode(x)  # b,4,h//8,w//8
            if sample:
                return posterior.sample().detach() * self.first_stage_scale_factor
            else:
                return posterior.mode().detach() * self.first_stage_scale_factor

    def decode_first_stage(self, z):
        with torch.no_grad():
            z = 1. / self.first_stage_scale_factor * z
            return self.first_stage_model.decode(z)

    def prepare(self, batch):
        # encode target
        if 'target_image' in batch:
            image_target = batch['target_image'].permute(0, 1, 4, 2, 3) # b,n,3,h,w
            N = image_target.shape[1]
            x = [self.encode_first_stage(image_target[:,ni], True) for ni in range(N)]
            x = torch.stack(x, 1) # b,n,4,h//8,w//8
        else:
            x = None

        image_input = batch['input_image'].permute(0, 3, 1, 2)
        elevation_input = batch['input_elevation'][:, 0] # b
        x_input = self.encode_first_stage(image_input)
        input_info = {'image': image_input, 'elevation': elevation_input, 'x': x_input}
        with torch.no_grad():
            clip_embed = self.clip_image_encoder.encode(image_input)
        return x, clip_embed, input_info

    def embed_time(self, t):
        t_embed = timestep_embedding(t, self.time_embed_dim, repeat_only=False) # B,TED
        t_embed = self.time_embed(t_embed) # B,TED
        return t_embed

    def get_target_view_feats(self, x_input, spatial_volume, clip_embed, t_embed, v_embed, target_index):
        """
        @param x_input:        B,4,H,W
        @param spatial_volume: B,C,V,V,V
        @param clip_embed:     B,1,768
        @param t_embed:        B,t_dim
        @param v_embed:        B,N,v_dim
        @param target_index:   B,TN
        @return:
            tensors of size B*TN,*
        """
        B, _, H, W = x_input.shape
        frustum_volume_feats, frustum_volume_depth = self.spatial_volume.construct_view_frustum_volume(spatial_volume, t_embed, v_embed, self.poses, self.Ks, target_index)

        # clip
        TN = target_index.shape[1]
        v_embed_ = v_embed[torch.arange(B)[:,None], target_index].view(B*TN, self.viewpoint_dim) # B*TN,v_dim
        clip_embed_ = clip_embed.unsqueeze(1).repeat(1,TN,1,1).view(B*TN,1,768)
        clip_embed_ = self.cc_projection(torch.cat([clip_embed_, v_embed_.unsqueeze(1)], -1))  # B*TN,1,768

        x_input_ = x_input.unsqueeze(1).repeat(1, TN, 1, 1, 1).view(B * TN, 4, H, W)

        x_concat = x_input_
        return clip_embed_, frustum_volume_feats, x_concat

    def training_step(self, batch):
        B = batch['target_image'].shape[0]
        time_steps = torch.randint(0, self.num_timesteps, (B,), device=self.device).long()

        x, clip_embed, input_info = self.prepare(batch)
        x_noisy, noise = self.add_noise(x, time_steps)  # B,N,4,H,W

        N = self.view_num
        target_index = torch.randint(0, N, (B, 1), device=self.device).long() # B, 1
        v_embed = self.get_viewpoint_embedding(B, input_info['elevation']) # N,v_dim

        t_embed = self.embed_time(time_steps)
        spatial_volume = self.spatial_volume.construct_spatial_volume(x_noisy, t_embed, v_embed, self.poses, self.Ks)

        clip_embed, volume_feats, x_concat = self.get_target_view_feats(input_info['x'], spatial_volume, clip_embed, t_embed, v_embed, target_index)

        x_noisy_ = x_noisy[torch.arange(B)[:,None],target_index][:,0] # B,4,H,W
        noise_predict = self.model(x_noisy_, time_steps, clip_embed, volume_feats, x_concat, is_train=True) # B,4,H,W

        noise_target = noise[torch.arange(B)[:,None],target_index][:,0] # B,4,H,W
        # loss simple for diffusion
        loss_simple = torch.nn.functional.mse_loss(noise_target, noise_predict, reduction='none')
        loss = loss_simple.mean()
        self.log('sim', loss_simple.mean(), prog_bar=True, logger=True, on_step=True, on_epoch=True, rank_zero_only=True)

        # log others
        lr = self.optimizers().param_groups[0]['lr']
        self.log('lr', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True)
        self.log("step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True)
        return loss

    def add_noise(self, x_start, t):
        """
        @param x_start: B,*
        @param t:       B,
        @return:
        """
        B = x_start.shape[0]
        noise = torch.randn_like(x_start) # B,*

        sqrt_alphas_cumprod_  = self.sqrt_alphas_cumprod[t] # B,
        sqrt_one_minus_alphas_cumprod_ = self.sqrt_one_minus_alphas_cumprod[t] # B
        sqrt_alphas_cumprod_ = sqrt_alphas_cumprod_.view(B, *[1 for _ in range(len(x_start.shape)-1)])
        sqrt_one_minus_alphas_cumprod_ = sqrt_one_minus_alphas_cumprod_.view(B, *[1 for _ in range(len(x_start.shape)-1)])
        x_noisy = sqrt_alphas_cumprod_ * x_start + sqrt_one_minus_alphas_cumprod_ * noise
        return x_noisy, noise

    def sample(self, sampler, batch, cfg_scale, batch_view_num, return_inter_results=False, inter_interval=50, inter_view_interval=2):
        _, clip_embed, input_info = self.prepare(batch)
        x_sample, inter = sampler.sample(input_info, clip_embed, unconditional_scale=cfg_scale, log_every_t=inter_interval, batch_view_num=batch_view_num)

        N = x_sample.shape[1]
        x_sample = torch.stack([self.decode_first_stage(x_sample[:, ni]) for ni in range(N)], 1)
        if return_inter_results:
            torch.cuda.synchronize()
            torch.cuda.empty_cache()
            inter = torch.stack(inter['x_inter'], 2) # # B,N,T,C,H,W
            B,N,T,C,H,W = inter.shape
            inter_results = []
            for ni in tqdm(range(0, N, inter_view_interval)):
                inter_results_ = []
                for ti in range(T):
                    inter_results_.append(self.decode_first_stage(inter[:, ni, ti]))
                inter_results.append(torch.stack(inter_results_, 1)) # B,T,3,H,W
            inter_results = torch.stack(inter_results,1) # B,N,T,3,H,W
            return x_sample, inter_results
        else:
            return x_sample

    def log_image(self,  x_sample, batch, step, output_dir):
        process = lambda x: ((torch.clip(x, min=-1, max=1).cpu().numpy() * 0.5 + 0.5) * 255).astype(np.uint8)
        B = x_sample.shape[0]
        N = x_sample.shape[1]
        image_cond = []
        for bi in range(B):
            img_pr_ = concat_images_list(process(batch['input_image'][bi]),*[process(x_sample[bi, ni].permute(1, 2, 0)) for ni in range(N)])
            image_cond.append(img_pr_)

        output_dir = Path(output_dir)
        imsave(str(output_dir/f'{step}.jpg'), concat_images_list(*image_cond, vert=True))

    @torch.no_grad()
    def validation_step(self, batch, batch_idx):
        if batch_idx==0 and self.global_rank==0:
            self.eval()
            step = self.global_step
            batch_ = {}
            for k, v in batch.items(): batch_[k] = v[:self.output_num]
            x_sample = self.sample(batch_, self.cfg_scale, self.batch_view_num)
            output_dir = Path(self.image_dir) / 'images' / 'val'
            output_dir.mkdir(exist_ok=True, parents=True)
            self.log_image(x_sample, batch, step, output_dir=output_dir)

    def configure_optimizers(self):
        lr = self.learning_rate
        print(f'setting learning rate to {lr:.4f} ...')
        paras = []
        if self.finetune_projection:
            paras.append({"params": self.cc_projection.parameters(), "lr": lr},)
        if self.finetune_unet:
            paras.append({"params": self.model.parameters(), "lr": lr},)
        else:
            paras.append({"params": self.model.get_trainable_parameters(), "lr": lr},)

        paras.append({"params": self.time_embed.parameters(), "lr": lr*10.0},)
        paras.append({"params": self.spatial_volume.parameters(), "lr": lr*10.0},)

        opt = torch.optim.AdamW(paras, lr=lr)

        scheduler = instantiate_from_config(self.scheduler_config)
        print("Setting up LambdaLR scheduler...")
        scheduler = [{'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1}]
        return [opt], scheduler

class SyncDDIMSampler:
    def __init__(self, model: SyncMultiviewDiffusion, ddim_num_steps, ddim_discretize="uniform", ddim_eta=1.0, latent_size=32):
        super().__init__()
        self.model = model
        self.ddpm_num_timesteps = model.num_timesteps
        self.latent_size = latent_size
        self._make_schedule(ddim_num_steps, ddim_discretize, ddim_eta)
        self.eta = ddim_eta

    def _make_schedule(self,  ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
        self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps, verbose=verbose) # DT
        ddim_timesteps_ = torch.from_numpy(self.ddim_timesteps.astype(np.int64)) # DT

        alphas_cumprod = self.model.alphas_cumprod # T
        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
        self.ddim_alphas = alphas_cumprod[ddim_timesteps_].double() # DT
        self.ddim_alphas_prev = torch.cat([alphas_cumprod[0:1], alphas_cumprod[ddim_timesteps_[:-1]]], 0) # DT
        self.ddim_sigmas = ddim_eta * torch.sqrt((1 - self.ddim_alphas_prev) / (1 - self.ddim_alphas) * (1 - self.ddim_alphas / self.ddim_alphas_prev))

        self.ddim_alphas_raw = self.model.alphas[ddim_timesteps_].float() # DT
        self.ddim_sigmas = self.ddim_sigmas.float()
        self.ddim_alphas = self.ddim_alphas.float()
        self.ddim_alphas_prev = self.ddim_alphas_prev.float()
        self.ddim_sqrt_one_minus_alphas = torch.sqrt(1. - self.ddim_alphas).float()


    @torch.no_grad()
    def denoise_apply_impl(self, x_target_noisy, index, noise_pred, is_step0=False):
        """
        @param x_target_noisy: B,N,4,H,W
        @param index:          index
        @param noise_pred:     B,N,4,H,W
        @param is_step0:       bool
        @return:
        """
        device = x_target_noisy.device
        B,N,_,H,W = x_target_noisy.shape

        # apply noise
        a_t = self.ddim_alphas[index].to(device).float().view(1,1,1,1,1)
        a_prev = self.ddim_alphas_prev[index].to(device).float().view(1,1,1,1,1)
        sqrt_one_minus_at = self.ddim_sqrt_one_minus_alphas[index].to(device).float().view(1,1,1,1,1)
        sigma_t = self.ddim_sigmas[index].to(device).float().view(1,1,1,1,1)

        pred_x0 = (x_target_noisy - sqrt_one_minus_at * noise_pred) / a_t.sqrt()
        dir_xt = torch.clamp(1. - a_prev - sigma_t**2, min=1e-7).sqrt() * noise_pred
        x_prev = a_prev.sqrt() * pred_x0 + dir_xt
        if not is_step0:
            noise = sigma_t * torch.randn_like(x_target_noisy)
            x_prev = x_prev + noise
        return x_prev

    @torch.no_grad()
    def denoise_apply(self, x_target_noisy, input_info, clip_embed, time_steps, index, unconditional_scale, batch_view_num=1, is_step0=False):
        """
        @param x_target_noisy:   B,N,4,H,W
        @param input_info:
        @param clip_embed:       B,M,768
        @param time_steps:       B,
        @param index:            int
        @param unconditional_scale:
        @param batch_view_num:   int
        @param is_step0:         bool
        @return:
        """
        x_input, elevation_input = input_info['x'], input_info['elevation']
        B, N, C, H, W = x_target_noisy.shape

        # construct source data
        v_embed = self.model.get_viewpoint_embedding(B, elevation_input) # B,N,v_dim
        t_embed = self.model.embed_time(time_steps)  # B,t_dim
        spatial_volume = self.model.spatial_volume.construct_spatial_volume(x_target_noisy, t_embed, v_embed, self.model.poses, self.model.Ks)

        e_t = []
        target_indices = torch.arange(N) # N
        for ni in range(0, N, batch_view_num):
            x_target_noisy_ = x_target_noisy[:, ni:ni + batch_view_num]
            VN = x_target_noisy_.shape[1]
            x_target_noisy_ = x_target_noisy_.reshape(B*VN,C,H,W)

            time_steps_ = repeat_to_batch(time_steps, B, VN)
            target_indices_ = target_indices[ni:ni+batch_view_num].unsqueeze(0).repeat(B,1)
            clip_embed_, volume_feats_, x_concat_ = self.model.get_target_view_feats(x_input, spatial_volume, clip_embed, t_embed, v_embed, target_indices_)
            noise = self.model.model.predict_with_decomposed_unconditional_scales(x_target_noisy_, time_steps_, clip_embed_, volume_feats_, x_concat_, unconditional_scale)
            e_t.append(noise.view(B,VN,4,H,W))

        e_t = torch.cat(e_t, 1)
        x_prev = self.denoise_apply_impl(x_target_noisy, index, e_t, is_step0)
        return x_prev

    @torch.no_grad()
    def sample(self, input_info, clip_embed, unconditional_scale, log_every_t=50, batch_view_num=1):
        """
        @param input_info:      x, elevation
        @param clip_embed:      B,M,768
        @param unconditional_scale:
        @param log_every_t:
        @param batch_view_num:
        @return:
        """
        C, H, W = 4, self.latent_size, self.latent_size
        B = clip_embed.shape[0]
        N = self.model.view_num
        device = self.model.device
        x_target_noisy = torch.randn([B, N, C, H, W], device=device)

        timesteps = self.ddim_timesteps
        intermediates = {'x_inter': []}
        time_range = np.flip(timesteps)
        total_steps = timesteps.shape[0]

        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
        for i, step in enumerate(iterator):
            index = total_steps - i - 1 # index in ddim state
            time_steps = torch.full((B,), step, device=device, dtype=torch.long)
            x_target_noisy = self.denoise_apply(x_target_noisy, input_info, clip_embed, time_steps, index, unconditional_scale, batch_view_num=batch_view_num, is_step0=index==0)
            if index % log_every_t == 0 or index == total_steps - 1:
                intermediates['x_inter'].append(x_target_noisy)

        return x_target_noisy, intermediates