Spaces:
Sleeping
Sleeping
File size: 30,713 Bytes
fe3e74d 0c0d385 fe3e74d f679b0c fe3e74d f679b0c fe3e74d f679b0c fe3e74d f679b0c fe3e74d f679b0c fe3e74d 01a5b8c fe3e74d f679b0c fe3e74d f679b0c fe3e74d f679b0c fe3e74d f679b0c fe3e74d f679b0c 0c0d385 f679b0c 0c0d385 f679b0c fe3e74d f679b0c fe3e74d 01a5b8c fe3e74d f679b0c fe3e74d f679b0c fe3e74d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
from pathlib import Path
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from skimage.io import imsave
from torch.optim.lr_scheduler import LambdaLR
from tqdm import tqdm
from ldm.base_utils import read_pickle, concat_images_list
from ldm.models.diffusion.sync_dreamer_utils import get_warp_coordinates, create_target_volume
from ldm.models.diffusion.sync_dreamer_network import NoisyTargetViewEncoder, SpatialTime3DNet, FrustumTV3DNet
from ldm.modules.diffusionmodules.util import make_ddim_timesteps, timestep_embedding
from ldm.modules.encoders.modules import FrozenCLIPImageEmbedder
from ldm.util import instantiate_from_config
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def disable_training_module(module: nn.Module):
module = module.eval()
module.train = disabled_train
for para in module.parameters():
para.requires_grad = False
return module
def repeat_to_batch(tensor, B, VN):
t_shape = tensor.shape
ones = [1 for _ in range(len(t_shape)-1)]
tensor_new = tensor.view(B,1,*t_shape[1:]).repeat(1,VN,*ones).view(B*VN,*t_shape[1:])
return tensor_new
class UNetWrapper(nn.Module):
def __init__(self, diff_model_config, drop_conditions=False, drop_scheme='default', use_zero_123=True):
super().__init__()
self.diffusion_model = instantiate_from_config(diff_model_config)
self.drop_conditions = drop_conditions
self.drop_scheme=drop_scheme
self.use_zero_123 = use_zero_123
def drop(self, cond, mask):
shape = cond.shape
B = shape[0]
cond = mask.view(B,*[1 for _ in range(len(shape)-1)]) * cond
return cond
def get_trainable_parameters(self):
return self.diffusion_model.get_trainable_parameters()
def get_drop_scheme(self, B, device):
if self.drop_scheme=='default':
random = torch.rand(B, dtype=torch.float32, device=device)
drop_clip = (random > 0.15) & (random <= 0.2)
drop_volume = (random > 0.1) & (random <= 0.15)
drop_concat = (random > 0.05) & (random <= 0.1)
drop_all = random <= 0.05
else:
raise NotImplementedError
return drop_clip, drop_volume, drop_concat, drop_all
def forward(self, x, t, clip_embed, volume_feats, x_concat, is_train=False):
"""
@param x: B,4,H,W
@param t: B,
@param clip_embed: B,M,768
@param volume_feats: B,C,D,H,W
@param x_concat: B,C,H,W
@param is_train:
@return:
"""
if self.drop_conditions and is_train:
B = x.shape[0]
drop_clip, drop_volume, drop_concat, drop_all = self.get_drop_scheme(B, x.device)
clip_mask = 1.0 - (drop_clip | drop_all).float()
clip_embed = self.drop(clip_embed, clip_mask)
volume_mask = 1.0 - (drop_volume | drop_all).float()
for k, v in volume_feats.items():
volume_feats[k] = self.drop(v, mask=volume_mask)
concat_mask = 1.0 - (drop_concat | drop_all).float()
x_concat = self.drop(x_concat, concat_mask)
if self.use_zero_123:
# zero123 does not multiply this when encoding, maybe a bug for zero123
first_stage_scale_factor = 0.18215
x_concat_ = x_concat * 1.0
x_concat_[:, :4] = x_concat_[:, :4] / first_stage_scale_factor
else:
x_concat_ = x_concat
x = torch.cat([x, x_concat_], 1)
pred = self.diffusion_model(x, t, clip_embed, source_dict=volume_feats)
return pred
def predict_with_decomposed_unconditional_scales(self, x, t, clip_embed, volume_feats, x_concat, unconditional_scales):
x_ = torch.cat([x] * 3, 0)
t_ = torch.cat([t] * 3, 0)
clip_embed_ = torch.cat([clip_embed, torch.zeros_like(clip_embed), clip_embed], 0)
x_concat_ = torch.cat([x_concat, torch.zeros_like(x_concat), x_concat*4], 0)
v_ = {}
for k, v in volume_feats.items():
v_[k] = torch.cat([v, v, torch.zeros_like(v)], 0)
if self.use_zero_123:
# zero123 does not multiply this when encoding, maybe a bug for zero123
first_stage_scale_factor = 0.18215
x_concat_[:, :4] = x_concat_[:, :4] / first_stage_scale_factor
x_ = torch.cat([x_, x_concat_], 1)
s, s_uc1, s_uc2 = self.diffusion_model(x_, t_, clip_embed_, source_dict=v_).chunk(3)
s = s + unconditional_scales[0] * (s - s_uc1) + unconditional_scales[1] * (s - s_uc2)
return s
class SpatialVolumeNet(nn.Module):
def __init__(self, time_dim, view_dim, view_num,
input_image_size=256, frustum_volume_depth=48,
spatial_volume_size=32, spatial_volume_length=0.5,
frustum_volume_length=0.86603 # sqrt(3)/2
):
super().__init__()
self.target_encoder = NoisyTargetViewEncoder(time_dim, view_dim, output_dim=16)
self.spatial_volume_feats = SpatialTime3DNet(input_dim=16 * view_num, time_dim=time_dim, dims=(64, 128, 256, 512))
self.frustum_volume_feats = FrustumTV3DNet(64, time_dim, view_dim, dims=(64, 128, 256, 512))
self.frustum_volume_length = frustum_volume_length
self.input_image_size = input_image_size
self.spatial_volume_size = spatial_volume_size
self.spatial_volume_length = spatial_volume_length
self.frustum_volume_size = self.input_image_size // 8
self.frustum_volume_depth = frustum_volume_depth
self.time_dim = time_dim
self.view_dim = view_dim
self.default_origin_depth = 1.5 # our rendered images are 1.5 away from the origin, we assume camera is 1.5 away from the origin
def construct_spatial_volume(self, x, t_embed, v_embed, target_poses, target_Ks):
"""
@param x: B,N,4,H,W
@param t_embed: B,t_dim
@param v_embed: B,N,v_dim
@param target_poses: N,3,4
@param target_Ks: N,3,3
@return:
"""
B, N, _, H, W = x.shape
V = self.spatial_volume_size
device = x.device
spatial_volume_verts = torch.linspace(-self.spatial_volume_length, self.spatial_volume_length, V, dtype=torch.float32, device=device)
spatial_volume_verts = torch.stack(torch.meshgrid(spatial_volume_verts, spatial_volume_verts, spatial_volume_verts), -1)
spatial_volume_verts = spatial_volume_verts.reshape(1, V ** 3, 3)[:, :, (2, 1, 0)]
spatial_volume_verts = spatial_volume_verts.view(1, V, V, V, 3).permute(0, 4, 1, 2, 3).repeat(B, 1, 1, 1, 1)
# encode source features
t_embed_ = t_embed.view(B, 1, self.time_dim).repeat(1, N, 1).view(B, N, self.time_dim)
# v_embed_ = v_embed.view(1, N, self.view_dim).repeat(B, 1, 1).view(B, N, self.view_dim)
v_embed_ = v_embed
target_Ks = target_Ks.unsqueeze(0).repeat(B, 1, 1, 1)
target_poses = target_poses.unsqueeze(0).repeat(B, 1, 1, 1)
# extract 2D image features
spatial_volume_feats = []
# project source features
for ni in range(0, N):
pose_source_ = target_poses[:, ni]
K_source_ = target_Ks[:, ni]
x_ = self.target_encoder(x[:, ni], t_embed_[:, ni], v_embed_[:, ni])
C = x_.shape[1]
coords_source = get_warp_coordinates(spatial_volume_verts, x_.shape[-1], self.input_image_size, K_source_, pose_source_).view(B, V, V * V, 2)
unproj_feats_ = F.grid_sample(x_, coords_source, mode='bilinear', padding_mode='zeros', align_corners=True)
unproj_feats_ = unproj_feats_.view(B, C, V, V, V)
spatial_volume_feats.append(unproj_feats_)
spatial_volume_feats = torch.stack(spatial_volume_feats, 1) # B,N,C,V,V,V
N = spatial_volume_feats.shape[1]
spatial_volume_feats = spatial_volume_feats.view(B, N*C, V, V, V)
spatial_volume_feats = self.spatial_volume_feats(spatial_volume_feats, t_embed) # b,64,32,32,32
return spatial_volume_feats
def construct_view_frustum_volume(self, spatial_volume, t_embed, v_embed, poses, Ks, target_indices):
"""
@param spatial_volume: B,C,V,V,V
@param t_embed: B,t_dim
@param v_embed: B,N,v_dim
@param poses: N,3,4
@param Ks: N,3,3
@param target_indices: B,TN
@return: B*TN,C,H,W
"""
B, TN = target_indices.shape
H, W = self.frustum_volume_size, self.frustum_volume_size
D = self.frustum_volume_depth
V = self.spatial_volume_size
near = torch.ones(B * TN, 1, H, W, dtype=spatial_volume.dtype, device=spatial_volume.device) * self.default_origin_depth - self.frustum_volume_length
far = torch.ones(B * TN, 1, H, W, dtype=spatial_volume.dtype, device=spatial_volume.device) * self.default_origin_depth + self.frustum_volume_length
target_indices = target_indices.view(B*TN) # B*TN
poses_ = poses[target_indices] # B*TN,3,4
Ks_ = Ks[target_indices] # B*TN,3,4
volume_xyz, volume_depth = create_target_volume(D, self.frustum_volume_size, self.input_image_size, poses_, Ks_, near, far) # B*TN,3 or 1,D,H,W
volume_xyz_ = volume_xyz / self.spatial_volume_length # since the spatial volume is constructed in [-spatial_volume_length,spatial_volume_length]
volume_xyz_ = volume_xyz_.permute(0, 2, 3, 4, 1) # B*TN,D,H,W,3
spatial_volume_ = spatial_volume.unsqueeze(1).repeat(1, TN, 1, 1, 1, 1).view(B * TN, -1, V, V, V)
volume_feats = F.grid_sample(spatial_volume_, volume_xyz_, mode='bilinear', padding_mode='zeros', align_corners=True) # B*TN,C,D,H,W
v_embed_ = v_embed[torch.arange(B)[:,None], target_indices.view(B,TN)].view(B*TN, -1) # B*TN
t_embed_ = t_embed.unsqueeze(1).repeat(1,TN,1).view(B*TN,-1)
volume_feats_dict = self.frustum_volume_feats(volume_feats, t_embed_, v_embed_)
return volume_feats_dict, volume_depth
class SyncMultiviewDiffusion(pl.LightningModule):
def __init__(self, unet_config, scheduler_config,
finetune_unet=False, finetune_projection=True,
view_num=16, image_size=256,
cfg_scale=3.0, output_num=8, batch_view_num=4,
drop_conditions=False, drop_scheme='default',
clip_image_encoder_path="/apdcephfs/private_rondyliu/projects/clip/ViT-L-14.pt"):
super().__init__()
self.finetune_unet = finetune_unet
self.finetune_projection = finetune_projection
self.view_num = view_num
self.viewpoint_dim = 4
self.output_num = output_num
self.image_size = image_size
self.batch_view_num = batch_view_num
self.cfg_scale = cfg_scale
self.clip_image_encoder_path = clip_image_encoder_path
self._init_time_step_embedding()
self._init_first_stage()
self._init_schedule()
self._init_multiview()
self._init_clip_image_encoder()
self._init_clip_projection()
self.spatial_volume = SpatialVolumeNet(self.time_embed_dim, self.viewpoint_dim, self.view_num)
self.model = UNetWrapper(unet_config, drop_conditions=drop_conditions, drop_scheme=drop_scheme)
self.scheduler_config = scheduler_config
latent_size = image_size//8
self.ddim = SyncDDIMSampler(self, 200, "uniform", 1.0, latent_size=latent_size)
def _init_clip_projection(self):
self.cc_projection = nn.Linear(772, 768)
nn.init.eye_(list(self.cc_projection.parameters())[0][:768, :768])
nn.init.zeros_(list(self.cc_projection.parameters())[1])
self.cc_projection.requires_grad_(True)
if not self.finetune_projection:
disable_training_module(self.cc_projection)
def _init_multiview(self):
K, azs, _, _, poses = read_pickle(f'meta_info/camera-{self.view_num}.pkl')
default_image_size = 256
ratio = self.image_size/default_image_size
K = np.diag([ratio,ratio,1]) @ K
K = torch.from_numpy(K.astype(np.float32)) # [3,3]
K = K.unsqueeze(0).repeat(self.view_num,1,1) # N,3,3
poses = torch.from_numpy(poses.astype(np.float32)) # N,3,4
self.register_buffer('poses', poses)
self.register_buffer('Ks', K)
azs = (azs + np.pi) % (np.pi * 2) - np.pi # scale to [-pi,pi] and the index=0 has az=0
self.register_buffer('azimuth', torch.from_numpy(azs.astype(np.float32)))
def get_viewpoint_embedding(self, batch_size, elevation_ref):
"""
@param batch_size:
@param elevation_ref: B
@return:
"""
azimuth_input = self.azimuth[0].unsqueeze(0) # 1
azimuth_target = self.azimuth # N
elevation_input = -elevation_ref # note that zero123 use a negative elevation here!!!
elevation_target = -np.deg2rad(30)
d_e = elevation_target - elevation_input # B
N = self.azimuth.shape[0]
B = batch_size
d_e = d_e.unsqueeze(1).repeat(1, N)
d_a = azimuth_target - azimuth_input # N
d_a = d_a.unsqueeze(0).repeat(B, 1)
d_z = torch.zeros_like(d_a)
embedding = torch.stack([d_e, torch.sin(d_a), torch.cos(d_a), d_z], -1) # B,N,4
return embedding
def _init_first_stage(self):
first_stage_config={
"target": "ldm.models.autoencoder.AutoencoderKL",
"params": {
"embed_dim": 4,
"monitor": "val/rec_loss",
"ddconfig":{
"double_z": True,
"z_channels": 4,
"resolution": self.image_size,
"in_channels": 3,
"out_ch": 3,
"ch": 128,
"ch_mult": [1,2,4,4],
"num_res_blocks": 2,
"attn_resolutions": [],
"dropout": 0.0
},
"lossconfig": {"target": "torch.nn.Identity"},
}
}
self.first_stage_scale_factor = 0.18215
self.first_stage_model = instantiate_from_config(first_stage_config)
self.first_stage_model = disable_training_module(self.first_stage_model)
def _init_clip_image_encoder(self):
self.clip_image_encoder = FrozenCLIPImageEmbedder(model=self.clip_image_encoder_path)
self.clip_image_encoder = disable_training_module(self.clip_image_encoder)
def _init_schedule(self):
self.num_timesteps = 1000
linear_start = 0.00085
linear_end = 0.0120
num_timesteps = 1000
betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, num_timesteps, dtype=torch.float32) ** 2 # T
assert betas.shape[0] == self.num_timesteps
# all in float64 first
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, dim=0) # T
alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) # T
posterior_log_variance_clipped = torch.log(torch.clamp(posterior_variance, min=1e-20))
posterior_log_variance_clipped = torch.clamp(posterior_log_variance_clipped, min=-10)
self.register_buffer("betas", betas.float())
self.register_buffer("alphas", alphas.float())
self.register_buffer("alphas_cumprod", alphas_cumprod.float())
self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod).float())
self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1 - alphas_cumprod).float())
self.register_buffer("posterior_variance", posterior_variance.float())
self.register_buffer('posterior_log_variance_clipped', posterior_log_variance_clipped.float())
def _init_time_step_embedding(self):
self.time_embed_dim = 256
self.time_embed = nn.Sequential(
nn.Linear(self.time_embed_dim, self.time_embed_dim),
nn.SiLU(True),
nn.Linear(self.time_embed_dim, self.time_embed_dim),
)
def encode_first_stage(self, x, sample=True):
with torch.no_grad():
posterior = self.first_stage_model.encode(x) # b,4,h//8,w//8
if sample:
return posterior.sample().detach() * self.first_stage_scale_factor
else:
return posterior.mode().detach() * self.first_stage_scale_factor
def decode_first_stage(self, z):
with torch.no_grad():
z = 1. / self.first_stage_scale_factor * z
return self.first_stage_model.decode(z)
def prepare(self, batch):
# encode target
if 'target_image' in batch:
image_target = batch['target_image'].permute(0, 1, 4, 2, 3) # b,n,3,h,w
N = image_target.shape[1]
x = [self.encode_first_stage(image_target[:,ni], True) for ni in range(N)]
x = torch.stack(x, 1) # b,n,4,h//8,w//8
else:
x = None
image_input = batch['input_image'].permute(0, 3, 1, 2)
elevation_input = batch['input_elevation'][:, 0] # b
x_input = self.encode_first_stage(image_input)
input_info = {'image': image_input, 'elevation': elevation_input, 'x': x_input}
with torch.no_grad():
clip_embed = self.clip_image_encoder.encode(image_input)
return x, clip_embed, input_info
def embed_time(self, t):
t_embed = timestep_embedding(t, self.time_embed_dim, repeat_only=False) # B,TED
t_embed = self.time_embed(t_embed) # B,TED
return t_embed
def get_target_view_feats(self, x_input, spatial_volume, clip_embed, t_embed, v_embed, target_index):
"""
@param x_input: B,4,H,W
@param spatial_volume: B,C,V,V,V
@param clip_embed: B,1,768
@param t_embed: B,t_dim
@param v_embed: B,N,v_dim
@param target_index: B,TN
@return:
tensors of size B*TN,*
"""
B, _, H, W = x_input.shape
frustum_volume_feats, frustum_volume_depth = self.spatial_volume.construct_view_frustum_volume(spatial_volume, t_embed, v_embed, self.poses, self.Ks, target_index)
# clip
TN = target_index.shape[1]
v_embed_ = v_embed[torch.arange(B)[:,None], target_index].view(B*TN, self.viewpoint_dim) # B*TN,v_dim
clip_embed_ = clip_embed.unsqueeze(1).repeat(1,TN,1,1).view(B*TN,1,768)
clip_embed_ = self.cc_projection(torch.cat([clip_embed_, v_embed_.unsqueeze(1)], -1)) # B*TN,1,768
x_input_ = x_input.unsqueeze(1).repeat(1, TN, 1, 1, 1).view(B * TN, 4, H, W)
x_concat = x_input_
return clip_embed_, frustum_volume_feats, x_concat
def training_step(self, batch):
B = batch['target_image'].shape[0]
time_steps = torch.randint(0, self.num_timesteps, (B,), device=self.device).long()
x, clip_embed, input_info = self.prepare(batch)
x_noisy, noise = self.add_noise(x, time_steps) # B,N,4,H,W
N = self.view_num
target_index = torch.randint(0, N, (B, 1), device=self.device).long() # B, 1
v_embed = self.get_viewpoint_embedding(B, input_info['elevation']) # N,v_dim
t_embed = self.embed_time(time_steps)
spatial_volume = self.spatial_volume.construct_spatial_volume(x_noisy, t_embed, v_embed, self.poses, self.Ks)
clip_embed, volume_feats, x_concat = self.get_target_view_feats(input_info['x'], spatial_volume, clip_embed, t_embed, v_embed, target_index)
x_noisy_ = x_noisy[torch.arange(B)[:,None],target_index][:,0] # B,4,H,W
noise_predict = self.model(x_noisy_, time_steps, clip_embed, volume_feats, x_concat, is_train=True) # B,4,H,W
noise_target = noise[torch.arange(B)[:,None],target_index][:,0] # B,4,H,W
# loss simple for diffusion
loss_simple = torch.nn.functional.mse_loss(noise_target, noise_predict, reduction='none')
loss = loss_simple.mean()
self.log('sim', loss_simple.mean(), prog_bar=True, logger=True, on_step=True, on_epoch=True, rank_zero_only=True)
# log others
lr = self.optimizers().param_groups[0]['lr']
self.log('lr', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True)
self.log("step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True)
return loss
def add_noise(self, x_start, t):
"""
@param x_start: B,*
@param t: B,
@return:
"""
B = x_start.shape[0]
noise = torch.randn_like(x_start) # B,*
sqrt_alphas_cumprod_ = self.sqrt_alphas_cumprod[t] # B,
sqrt_one_minus_alphas_cumprod_ = self.sqrt_one_minus_alphas_cumprod[t] # B
sqrt_alphas_cumprod_ = sqrt_alphas_cumprod_.view(B, *[1 for _ in range(len(x_start.shape)-1)])
sqrt_one_minus_alphas_cumprod_ = sqrt_one_minus_alphas_cumprod_.view(B, *[1 for _ in range(len(x_start.shape)-1)])
x_noisy = sqrt_alphas_cumprod_ * x_start + sqrt_one_minus_alphas_cumprod_ * noise
return x_noisy, noise
def sample(self, sampler, batch, cfg_scale, batch_view_num, return_inter_results=False, inter_interval=50, inter_view_interval=2):
_, clip_embed, input_info = self.prepare(batch)
x_sample, inter = sampler.sample(input_info, clip_embed, unconditional_scale=cfg_scale, log_every_t=inter_interval, batch_view_num=batch_view_num)
N = x_sample.shape[1]
x_sample = torch.stack([self.decode_first_stage(x_sample[:, ni]) for ni in range(N)], 1)
if return_inter_results:
torch.cuda.synchronize()
torch.cuda.empty_cache()
inter = torch.stack(inter['x_inter'], 2) # # B,N,T,C,H,W
B,N,T,C,H,W = inter.shape
inter_results = []
for ni in tqdm(range(0, N, inter_view_interval)):
inter_results_ = []
for ti in range(T):
inter_results_.append(self.decode_first_stage(inter[:, ni, ti]))
inter_results.append(torch.stack(inter_results_, 1)) # B,T,3,H,W
inter_results = torch.stack(inter_results,1) # B,N,T,3,H,W
return x_sample, inter_results
else:
return x_sample
def log_image(self, x_sample, batch, step, output_dir):
process = lambda x: ((torch.clip(x, min=-1, max=1).cpu().numpy() * 0.5 + 0.5) * 255).astype(np.uint8)
B = x_sample.shape[0]
N = x_sample.shape[1]
image_cond = []
for bi in range(B):
img_pr_ = concat_images_list(process(batch['input_image'][bi]),*[process(x_sample[bi, ni].permute(1, 2, 0)) for ni in range(N)])
image_cond.append(img_pr_)
output_dir = Path(output_dir)
imsave(str(output_dir/f'{step}.jpg'), concat_images_list(*image_cond, vert=True))
@torch.no_grad()
def validation_step(self, batch, batch_idx):
if batch_idx==0 and self.global_rank==0:
self.eval()
step = self.global_step
batch_ = {}
for k, v in batch.items(): batch_[k] = v[:self.output_num]
x_sample = self.sample(batch_, self.cfg_scale, self.batch_view_num)
output_dir = Path(self.image_dir) / 'images' / 'val'
output_dir.mkdir(exist_ok=True, parents=True)
self.log_image(x_sample, batch, step, output_dir=output_dir)
def configure_optimizers(self):
lr = self.learning_rate
print(f'setting learning rate to {lr:.4f} ...')
paras = []
if self.finetune_projection:
paras.append({"params": self.cc_projection.parameters(), "lr": lr},)
if self.finetune_unet:
paras.append({"params": self.model.parameters(), "lr": lr},)
else:
paras.append({"params": self.model.get_trainable_parameters(), "lr": lr},)
paras.append({"params": self.time_embed.parameters(), "lr": lr*10.0},)
paras.append({"params": self.spatial_volume.parameters(), "lr": lr*10.0},)
opt = torch.optim.AdamW(paras, lr=lr)
scheduler = instantiate_from_config(self.scheduler_config)
print("Setting up LambdaLR scheduler...")
scheduler = [{'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1}]
return [opt], scheduler
class SyncDDIMSampler:
def __init__(self, model: SyncMultiviewDiffusion, ddim_num_steps, ddim_discretize="uniform", ddim_eta=1.0, latent_size=32):
super().__init__()
self.model = model
self.ddpm_num_timesteps = model.num_timesteps
self.latent_size = latent_size
self._make_schedule(ddim_num_steps, ddim_discretize, ddim_eta)
self.eta = ddim_eta
def _make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps, verbose=verbose) # DT
ddim_timesteps_ = torch.from_numpy(self.ddim_timesteps.astype(np.int64)) # DT
alphas_cumprod = self.model.alphas_cumprod # T
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
self.ddim_alphas = alphas_cumprod[ddim_timesteps_].double() # DT
self.ddim_alphas_prev = torch.cat([alphas_cumprod[0:1], alphas_cumprod[ddim_timesteps_[:-1]]], 0) # DT
self.ddim_sigmas = ddim_eta * torch.sqrt((1 - self.ddim_alphas_prev) / (1 - self.ddim_alphas) * (1 - self.ddim_alphas / self.ddim_alphas_prev))
self.ddim_alphas_raw = self.model.alphas[ddim_timesteps_].float() # DT
self.ddim_sigmas = self.ddim_sigmas.float()
self.ddim_alphas = self.ddim_alphas.float()
self.ddim_alphas_prev = self.ddim_alphas_prev.float()
self.ddim_sqrt_one_minus_alphas = torch.sqrt(1. - self.ddim_alphas).float()
@torch.no_grad()
def denoise_apply_impl(self, x_target_noisy, index, noise_pred, is_step0=False):
"""
@param x_target_noisy: B,N,4,H,W
@param index: index
@param noise_pred: B,N,4,H,W
@param is_step0: bool
@return:
"""
device = x_target_noisy.device
B,N,_,H,W = x_target_noisy.shape
# apply noise
a_t = self.ddim_alphas[index].to(device).float().view(1,1,1,1,1)
a_prev = self.ddim_alphas_prev[index].to(device).float().view(1,1,1,1,1)
sqrt_one_minus_at = self.ddim_sqrt_one_minus_alphas[index].to(device).float().view(1,1,1,1,1)
sigma_t = self.ddim_sigmas[index].to(device).float().view(1,1,1,1,1)
pred_x0 = (x_target_noisy - sqrt_one_minus_at * noise_pred) / a_t.sqrt()
dir_xt = torch.clamp(1. - a_prev - sigma_t**2, min=1e-7).sqrt() * noise_pred
x_prev = a_prev.sqrt() * pred_x0 + dir_xt
if not is_step0:
noise = sigma_t * torch.randn_like(x_target_noisy)
x_prev = x_prev + noise
return x_prev
@torch.no_grad()
def denoise_apply(self, x_target_noisy, input_info, clip_embed, time_steps, index, unconditional_scale, batch_view_num=1, is_step0=False):
"""
@param x_target_noisy: B,N,4,H,W
@param input_info:
@param clip_embed: B,M,768
@param time_steps: B,
@param index: int
@param unconditional_scale:
@param batch_view_num: int
@param is_step0: bool
@return:
"""
x_input, elevation_input = input_info['x'], input_info['elevation']
B, N, C, H, W = x_target_noisy.shape
# construct source data
v_embed = self.model.get_viewpoint_embedding(B, elevation_input) # B,N,v_dim
t_embed = self.model.embed_time(time_steps) # B,t_dim
spatial_volume = self.model.spatial_volume.construct_spatial_volume(x_target_noisy, t_embed, v_embed, self.model.poses, self.model.Ks)
e_t = []
target_indices = torch.arange(N) # N
for ni in range(0, N, batch_view_num):
x_target_noisy_ = x_target_noisy[:, ni:ni + batch_view_num]
VN = x_target_noisy_.shape[1]
x_target_noisy_ = x_target_noisy_.reshape(B*VN,C,H,W)
time_steps_ = repeat_to_batch(time_steps, B, VN)
target_indices_ = target_indices[ni:ni+batch_view_num].unsqueeze(0).repeat(B,1)
clip_embed_, volume_feats_, x_concat_ = self.model.get_target_view_feats(x_input, spatial_volume, clip_embed, t_embed, v_embed, target_indices_)
noise = self.model.model.predict_with_decomposed_unconditional_scales(x_target_noisy_, time_steps_, clip_embed_, volume_feats_, x_concat_, unconditional_scale)
e_t.append(noise.view(B,VN,4,H,W))
e_t = torch.cat(e_t, 1)
x_prev = self.denoise_apply_impl(x_target_noisy, index, e_t, is_step0)
return x_prev
@torch.no_grad()
def sample(self, input_info, clip_embed, unconditional_scale, log_every_t=50, batch_view_num=1):
"""
@param input_info: x, elevation
@param clip_embed: B,M,768
@param unconditional_scale:
@param log_every_t:
@param batch_view_num:
@return:
"""
C, H, W = 4, self.latent_size, self.latent_size
B = clip_embed.shape[0]
N = self.model.view_num
device = self.model.device
x_target_noisy = torch.randn([B, N, C, H, W], device=device)
timesteps = self.ddim_timesteps
intermediates = {'x_inter': []}
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
for i, step in enumerate(iterator):
index = total_steps - i - 1 # index in ddim state
time_steps = torch.full((B,), step, device=device, dtype=torch.long)
x_target_noisy = self.denoise_apply(x_target_noisy, input_info, clip_embed, time_steps, index, unconditional_scale, batch_view_num=batch_view_num, is_step0=index==0)
if index % log_every_t == 0 or index == total_steps - 1:
intermediates['x_inter'].append(x_target_noisy)
return x_target_noisy, intermediates |