Spaces:
Sleeping
Sleeping
Update myagent.py
Browse files- myagent.py +55 -113
myagent.py
CHANGED
@@ -8,139 +8,81 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
8 |
import torch
|
9 |
|
10 |
# --- Basic Agent Definition ---
|
11 |
-
class BasicAgent:
|
12 |
-
def __init__(self):
|
13 |
-
print("BasicAgent initialized.")
|
14 |
-
|
15 |
-
def __call__(self, question: str) -> str:
|
16 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
17 |
|
18 |
-
|
19 |
-
# Use the reviewer agent to determine if the question can be answered by a model or requires code
|
20 |
-
print("Calling reviewer agent...")
|
21 |
-
reviewer_answer = reviewer_agent.run(myprompts.review_prompt + "\nThe question is:\n" + question)
|
22 |
-
print(f"Reviewer agent answer: {reviewer_answer}")
|
23 |
-
|
24 |
-
question = question + '\n' + myprompts.output_format
|
25 |
-
fixed_answer = ""
|
26 |
-
|
27 |
-
if reviewer_answer == "code":
|
28 |
-
fixed_answer = gaia_agent.run(question)
|
29 |
-
print(f"Code agent answer: {fixed_answer}")
|
30 |
-
|
31 |
-
elif reviewer_answer == "model":
|
32 |
-
# If the reviewer agent suggests using the model, we can proceed with the model agent
|
33 |
-
print("Using model agent to answer the question.")
|
34 |
-
fixed_answer = model_agent.run(myprompts.model_prompt + "\nThe question is:\n" + question)
|
35 |
-
print(f"Model agent answer: {fixed_answer}")
|
36 |
-
|
37 |
-
return fixed_answer
|
38 |
-
except Exception as e:
|
39 |
-
error = f"An error occurred while processing the question: {e}"
|
40 |
-
print(error)
|
41 |
-
return error
|
42 |
-
|
43 |
-
# Load model and tokenizer
|
44 |
-
model_id = "LiquidAI/LFM2-1.2B"
|
45 |
-
model = AutoModelForCausalLM.from_pretrained(
|
46 |
-
model_id,
|
47 |
-
device_map="auto",
|
48 |
-
torch_dtype=torch.bfloat16, # Fixed: was string, should be torch dtype
|
49 |
-
trust_remote_code=True,
|
50 |
-
# attn_implementation="flash_attention_2" # <- uncomment on compatible GPU
|
51 |
-
)
|
52 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
53 |
-
|
54 |
-
# Create a wrapper class that matches the expected interface
|
55 |
class LocalLlamaModel:
|
56 |
def __init__(self, model, tokenizer):
|
57 |
self.model = model
|
58 |
self.tokenizer = tokenizer
|
59 |
self.device = model.device if hasattr(model, 'device') else 'cpu'
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
if isinstance(
|
64 |
-
return
|
65 |
-
elif isinstance(
|
66 |
-
#
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
if isinstance(msg.content, list):
|
72 |
-
# Content is a list of content items
|
73 |
-
for content_item in msg.content:
|
74 |
-
if isinstance(content_item, dict) and 'text' in content_item:
|
75 |
-
text_parts.append(content_item['text'])
|
76 |
-
elif hasattr(content_item, 'text'):
|
77 |
-
text_parts.append(content_item.text)
|
78 |
-
elif isinstance(msg.content, str):
|
79 |
-
text_parts.append(msg.content)
|
80 |
-
elif isinstance(msg, dict) and 'content' in msg:
|
81 |
-
# Handle dictionary format
|
82 |
-
text_parts.append(str(msg['content']))
|
83 |
-
else:
|
84 |
-
# Fallback: convert to string
|
85 |
-
text_parts.append(str(msg))
|
86 |
-
return '\n'.join(text_parts)
|
87 |
else:
|
88 |
-
return str(
|
89 |
-
|
90 |
-
def generate(self, prompt, max_new_tokens=512
|
91 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
print("Prompt: ", prompt)
|
94 |
-
print("Prompt type: ", type(prompt))
|
95 |
-
# Extract text from the prompt (which might be ChatMessage objects)
|
96 |
-
text_prompt = self._extract_text_from_messages(prompt)
|
97 |
-
|
98 |
-
print("Extracted text prompt:", text_prompt[:200] + "..." if len(text_prompt) > 200 else text_prompt)
|
99 |
-
|
100 |
-
# Tokenize the text prompt
|
101 |
-
inputs = self.tokenizer(text_prompt, return_tensors="pt").to(self.model.device)
|
102 |
-
input_ids = inputs['input_ids']
|
103 |
-
|
104 |
-
# Generate output
|
105 |
with torch.no_grad():
|
106 |
output = self.model.generate(
|
107 |
-
input_ids,
|
108 |
do_sample=True,
|
109 |
temperature=0.3,
|
110 |
min_p=0.15,
|
111 |
repetition_penalty=1.05,
|
112 |
max_new_tokens=max_new_tokens,
|
113 |
-
pad_token_id=self.tokenizer.eos_token_id,
|
114 |
)
|
115 |
-
|
116 |
-
# Decode only the new tokens (exclude the input)
|
117 |
new_tokens = output[0][len(input_ids[0]):]
|
118 |
-
|
119 |
-
|
120 |
-
return response.strip()
|
121 |
-
|
122 |
-
except Exception as e:
|
123 |
-
print(f"Error in model generation: {e}")
|
124 |
-
return f"Error generating response: {str(e)}"
|
125 |
|
126 |
-
|
127 |
-
"""Make the model callable like a function"""
|
128 |
-
return self.generate(prompt, max_new_tokens, **kwargs)
|
129 |
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
#
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
140 |
|
|
|
141 |
if __name__ == "__main__":
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
8 |
import torch
|
9 |
|
10 |
# --- Basic Agent Definition ---
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Basic model wrapper for local inference with debug info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
class LocalLlamaModel:
|
14 |
def __init__(self, model, tokenizer):
|
15 |
self.model = model
|
16 |
self.tokenizer = tokenizer
|
17 |
self.device = model.device if hasattr(model, 'device') else 'cpu'
|
18 |
+
print(f"Model device: {self.device}")
|
19 |
+
|
20 |
+
def _extract_prompt(self, prompt):
|
21 |
+
if isinstance(prompt, str):
|
22 |
+
return prompt
|
23 |
+
elif isinstance(prompt, list):
|
24 |
+
# Convert list of ChatMessages or dicts to plain text
|
25 |
+
return "\n".join(
|
26 |
+
msg.content if hasattr(msg, "content") else msg.get("content", str(msg))
|
27 |
+
for msg in prompt
|
28 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
else:
|
30 |
+
return str(prompt)
|
31 |
+
|
32 |
+
def generate(self, prompt, max_new_tokens=512):
|
33 |
try:
|
34 |
+
print("\n[DEBUG] Raw prompt input:", prompt)
|
35 |
+
text_prompt = self._extract_prompt(prompt)
|
36 |
+
print("[DEBUG] Extracted prompt text:", text_prompt[:200] + "..." if len(text_prompt) > 200 else text_prompt)
|
37 |
+
|
38 |
+
inputs = self.tokenizer(text_prompt, return_tensors="pt").to(self.device)
|
39 |
+
input_ids = inputs["input_ids"]
|
40 |
+
|
41 |
+
print("[DEBUG] Tokenized input shape:", input_ids.shape)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
with torch.no_grad():
|
44 |
output = self.model.generate(
|
45 |
+
input_ids=input_ids,
|
46 |
do_sample=True,
|
47 |
temperature=0.3,
|
48 |
min_p=0.15,
|
49 |
repetition_penalty=1.05,
|
50 |
max_new_tokens=max_new_tokens,
|
51 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
52 |
)
|
53 |
+
|
|
|
54 |
new_tokens = output[0][len(input_ids[0]):]
|
55 |
+
decoded = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
|
56 |
+
print("[DEBUG] Decoded output:", decoded.strip())
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
return decoded.strip()
|
|
|
|
|
59 |
|
60 |
+
except Exception as e:
|
61 |
+
print(f"[ERROR] Generation failed: {e}")
|
62 |
+
return f"Error generating response: {e}"
|
63 |
+
|
64 |
+
def __call__(self, prompt, max_new_tokens=512):
|
65 |
+
return self.generate(prompt, max_new_tokens)
|
66 |
|
67 |
+
# Load your model and tokenizer
|
68 |
+
def load_model(model_id="LiquidAI/LFM2-1.2B"):
|
69 |
+
print(f"Loading model: {model_id}")
|
70 |
+
model = AutoModelForCausalLM.from_pretrained(
|
71 |
+
model_id,
|
72 |
+
device_map="auto",
|
73 |
+
torch_dtype=torch.bfloat16,
|
74 |
+
trust_remote_code=True,
|
75 |
+
)
|
76 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
77 |
+
return LocalLlamaModel(model, tokenizer)
|
78 |
|
79 |
+
# Run minimal test
|
80 |
if __name__ == "__main__":
|
81 |
+
model = load_model()
|
82 |
+
|
83 |
+
# Example prompt
|
84 |
+
prompt = "What is the capital of France?"
|
85 |
+
|
86 |
+
print("\n[TEST] Asking a simple question...")
|
87 |
+
response = model(prompt)
|
88 |
+
print("\nFinal Answer:", response)
|