Spaces:
Sleeping
Sleeping
import os | |
from smolagents import CodeAgent, ToolCallingAgent | |
from smolagents import OpenAIServerModel | |
from tools.fetch import fetch_webpage | |
from tools.yttranscript import get_youtube_transcript, get_youtube_title_description | |
import myprompts | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import torch | |
# --- Basic Agent Definition --- | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
try: | |
# Use the reviewer agent to determine if the question can be answered by a model or requires code | |
print("Calling reviewer agent...") | |
reviewer_answer = reviewer_agent.run(myprompts.review_prompt + "\nThe question is:\n" + question) | |
print(f"Reviewer agent answer: {reviewer_answer}") | |
question = question + '\n' + myprompts.output_format | |
fixed_answer = "" | |
if reviewer_answer == "code": | |
fixed_answer = gaia_agent.run(question) | |
print(f"Code agent answer: {fixed_answer}") | |
elif reviewer_answer == "model": | |
# If the reviewer agent suggests using the model, we can proceed with the model agent | |
print("Using model agent to answer the question.") | |
fixed_answer = model_agent.run(myprompts.model_prompt + "\nThe question is:\n" + question) | |
print(f"Model agent answer: {fixed_answer}") | |
return fixed_answer | |
except Exception as e: | |
error = f"An error occurred while processing the question: {e}" | |
print(error) | |
return error | |
# model = OpenAIServerModel( | |
# model_id="gpt-4.1-nano", | |
# api_base="https://api.openai.com/v1", | |
# api_key=os.environ["OPENAI_API_KEY"], | |
# ) | |
model_id = "bartowski/Llama-3.2-3B-Instruct-GGUF" | |
filename = "Llama-3.2-3B-Instruct-Q4_K_M.gguf" | |
torch_dtype = torch.float32 # could be torch.float16 or torch.bfloat16 too | |
tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename) | |
model_init = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename, torch_dtype=torch_dtype) | |
def model(prompt: str, max_new_tokens=512): | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) | |
output_ids = model_init.generate(input_ids, max_new_tokens=max_new_tokens) | |
output = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
return output | |
reviewer_agent= ToolCallingAgent(model=model, tools=[]) | |
model_agent = ToolCallingAgent(model=model,tools=[fetch_webpage]) | |
gaia_agent = CodeAgent(tools=[fetch_webpage,get_youtube_title_description,get_youtube_transcript ], model=model) | |
if __name__ == "__main__": | |
# Example usage | |
question = "What was the actual enrollment of the Malko competition in 2023?" | |
agent = BasicAgent() | |
answer = agent(question) | |
print(f"Answer: {answer}") |