recap / app.py
burtenshaw's picture
burtenshaw HF staff
fix percentiles response
75c87c6 verified
raw
history blame
12.8 kB
import requests
import gradio as gr
from urllib.parse import urlencode
import os
from datetime import datetime
import json
# Load environment variables
DEFAULT_IMAGE = "https://hub-recap.imglab-cdn.net/default.jpg?width=1200&text=%3Cspan+size%3D%2212pt%22+weight%3D%22bold%22%3EHugging+Face++%E2%9D%A4%EF%B8%8F+bartowski+in+2024%3C%2Fspan%3E%0A%0A%3Cspan+weight%3D%22bold%22%3E2%2C020%2C552%3C%2Fspan%3E+model+downloads%0A%3Cspan+weight%3D%22bold%22%3E5%2C407%3C%2Fspan%3E+model+likes%0A%3Cspan+weight%3D%22bold%22%3E0%3C%2Fspan%3E+dataset+downloads%0A%3Cspan+weight%3D%22bold%22%3E0%3C%2Fspan%3E+dataset+likes%0A%0A%3Cspan+size%3D%2210pt%22%3EMost+Popular+Contributions%3A%3C%2Fspan%3E%0AModel%3A+%3Cspan+weight%3D%22bold%22%3Ebartowski%2Fgemma-2-9b-it-GGUF%3C%2Fspan%3E%0A++%2843%2C949+downloads%2C+196+likes%29%0ADataset%3A+%3Cspan+weight%3D%22bold%22%3ENone%3C%2Fspan%3E%0A++%280+downloads%2C+0+likes%29%0ASpace%3A+%3Cspan+weight%3D%22bold%22%3Ebartowski%2Fgguf-metadata-updater%3C%2Fspan%3E%0A++%287+likes%29&text-width=800&text-height=600&text-padding=60&text-color=39%2C71%2C111&text-x=460&text-y=40&format=png&dpr=2"
# Load percentiles data
with open("percentiles.json") as f:
PERCENTILES = json.load(f)
def get_percentile_rank(likes, category):
if likes == 0:
return 0
percentiles = PERCENTILES[f"{category}_percentiles"]
if likes >= percentiles["p_99999"]:
return 99.999
elif likes >= percentiles["p_9999"]:
return 99.99
elif likes >= percentiles["p_999"]:
return 99.9
return 0
def create_image(stats, username):
# Determine which image to use based on highest value
total_stats = stats["Total Statistics"]
model_activity = total_stats["Model Downloads"] + total_stats["Model Likes"]
dataset_activity = total_stats["Dataset Downloads"] + total_stats["Dataset Likes"]
space_activity = total_stats["Space Likes"]
# Calculate percentiles based on likes
model_percentile = get_percentile_rank(total_stats["Model Likes"], "model")
dataset_percentile = get_percentile_rank(total_stats["Dataset Likes"], "dataset")
space_percentile = get_percentile_rank(space_activity, "space")
# Choose base image URL based on highest activity (keep using activity for image selection)
if model_activity == 0 and dataset_activity == 0 and space_activity == 0:
url = "https://hub-recap.imglab-cdn.net/images/empty-v1.png"
avatar = "newbie! We couldn't find your stats on the Hub, maybe in 2025?"
elif model_activity >= max(dataset_activity, space_activity):
url = "https://hub-recap.imglab-cdn.net/images/model-v1.png"
avatar = f"Model Pro" + (
f" (top {100 - model_percentile}%)" if model_percentile > 0 else ""
)
elif dataset_activity >= max(model_activity, space_activity):
url = "https://hub-recap.imglab-cdn.net/images/dataset-v1.png"
avatar = f"Dataset Guru" + (
f" (top {100 - dataset_percentile}%)" if dataset_percentile > 0 else ""
)
elif space_activity >= max(model_activity, dataset_activity):
url = "https://hub-recap.imglab-cdn.net/images/space-v1.png"
avatar = f"Space Artiste" + (
f" (top {100 - space_percentile}%)" if space_percentile > 0 else ""
)
else:
url = "https://hub-recap.imglab-cdn.net/images/empty-v1.png"
avatar = "newbie! We couldn't find your stats on the Hub, maybe in 2025?"
# Build text content with proper formatting
text_parts = []
text_parts.append(
f'<span size="11pt" weight="bold">Hugging Face ❤️ {username} in 2024</span>'
)
text_parts.append("") # Empty line for spacing
# Stats section
stats_lines = []
if total_stats["Model Downloads"] > 0:
stats_lines.append(
f'<span size="9pt"><span weight="bold">{total_stats["Model Downloads"]:,}</span> model downloads</span>'
)
if total_stats["Model Likes"] > 0:
stats_lines.append(
f'<span size="9pt"><span weight="bold">{total_stats["Model Likes"]:,}</span> model likes</span>'
)
if total_stats["Dataset Downloads"] > 0:
stats_lines.append(
f'<span size="9pt"><span weight="bold">{total_stats["Dataset Downloads"]:,}</span> dataset downloads</span>'
)
if total_stats["Dataset Likes"] > 0:
stats_lines.append(
f'<span size="9pt"><span weight="bold">{total_stats["Dataset Likes"]:,}</span> dataset likes</span>'
)
if total_stats["Space Likes"] > 0:
stats_lines.append(
f'<span size="9pt"><span weight="bold">{total_stats["Space Likes"]:,}</span> space likes</span>'
)
if stats_lines:
text_parts.extend(stats_lines)
text_parts.append("") # Empty line for spacing
# Popular items section
top_items = stats["Most Popular Items"]
if any(
item["likes"] > 0 or item.get("downloads", 0) > 0 for item in top_items.values()
):
text_parts.append(
'<span size="9pt" weight="bold">Most Popular Contributions:</span>'
)
if top_items["Top Model"]["downloads"] > 0:
text_parts.append(
f'<span size="9pt">Model: <span weight="bold">{top_items["Top Model"]["name"]}</span></span>'
)
text_parts.append(
f'<span size="9pt"> ({top_items["Top Model"]["downloads"]:,} downloads, {top_items["Top Model"]["likes"]} likes)</span>'
)
if top_items["Top Dataset"]["downloads"] > 0:
text_parts.append(
f'<span size="9pt">Dataset: <span weight="bold">{top_items["Top Dataset"]["name"]}</span></span>'
)
text_parts.append(
f'<span size="9pt"> ({top_items["Top Dataset"]["downloads"]:,} downloads, {top_items["Top Dataset"]["likes"]} likes)</span>'
)
if top_items["Top Space"]["likes"] > 0:
text_parts.append(
f'<span size="9pt">Space: <span weight="bold">{top_items["Top Space"]["name"]}</span></span>'
)
text_parts.append(
f'<span size="9pt"> ({top_items["Top Space"]["likes"]} likes)</span>'
)
# Update the avatar message with percentile
text_parts.append("") # Empty line for spacing
text_parts.append(f'<span size="9pt">You are a {avatar}!</span>')
# Add additional percentile info if other categories are significant
other_percentiles = []
if model_percentile > 0 and "model" not in avatar.lower():
other_percentiles.append(f"Top {model_percentile}% in models")
if dataset_percentile > 0 and "dataset" not in avatar.lower():
other_percentiles.append(f"Top {dataset_percentile}% in datasets")
if space_percentile > 0 and "space" not in avatar.lower():
other_percentiles.append(f"Top {space_percentile}% in spaces")
if other_percentiles:
text_parts.append(f'<span size="9pt">{". ".join(other_percentiles)}!</span>')
# Join all parts with newlines
text = "\n".join(text_parts)
params = {
"width": "1200",
"text": text,
"text-width": "700",
"text-height": "600",
"text-padding": "30",
"text-color": "39,71,111",
"text-x": "460",
"text-y": "40",
"format": "png",
"dpr": "2",
}
return f"{url}?{urlencode(params)}"
def is_from_2024(created_at_str):
if not created_at_str:
return False
created_at = datetime.strptime(created_at_str, "%Y-%m-%dT%H:%M:%S.%fZ")
return created_at.year == 2024
def get_user_stats(username):
headers = {"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"}
# Get models stats
models_response = requests.get(
"https://huggingface.co/api/models",
params={"author": username, "full": "False", "limit": 100, "sort": "downloads"},
headers=headers,
)
# Filter for 2024 models only
models = [
model
for model in models_response.json()
# if is_from_2024(model.get("createdAt"))
]
# Get datasets stats
datasets_response = requests.get(
"https://huggingface.co/api/datasets",
params={"author": username, "full": "True"},
headers=headers,
)
# Filter for 2024 datasets only
datasets = [
dataset
for dataset in datasets_response.json()
# if is_from_2024(dataset.get("createdAt"))
]
# Get spaces stats
spaces_response = requests.get(
"https://huggingface.co/api/spaces",
params={"author": username, "full": "True"},
headers=headers,
)
# Filter for 2024 spaces only
spaces = [
space
for space in spaces_response.json()
# if is_from_2024(space.get("createdAt"))
]
# Calculate totals for 2024 items only
total_model_downloads = sum(model.get("downloads", 0) for model in models)
total_model_likes = sum(model.get("likes", 0) for model in models)
total_dataset_downloads = sum(dataset.get("downloads", 0) for dataset in datasets)
total_dataset_likes = sum(dataset.get("likes", 0) for dataset in datasets)
total_space_likes = sum(space.get("likes", 0) for space in spaces)
# Find most liked items from 2024
most_liked_model = max(models, key=lambda x: x.get("likes", 0), default=None)
most_liked_dataset = max(datasets, key=lambda x: x.get("likes", 0), default=None)
most_liked_space = max(spaces, key=lambda x: x.get("likes", 0), default=None)
stats = {
"Total Statistics": {
"Model Downloads": total_model_downloads,
"Model Likes": total_model_likes,
"Dataset Downloads": total_dataset_downloads,
"Dataset Likes": total_dataset_likes,
"Space Likes": total_space_likes,
},
"Most Popular Items": {
"Top Model": {
"name": (
most_liked_model.get("modelId", "None")
if most_liked_model
else "None"
),
"likes": most_liked_model.get("likes", 0) if most_liked_model else 0,
"downloads": (
most_liked_model.get("downloads", 0) if most_liked_model else 0
),
},
"Top Dataset": {
"name": (
most_liked_dataset.get("id", "None")
if most_liked_dataset
else "None"
),
"likes": (
most_liked_dataset.get("likes", 0) if most_liked_dataset else 0
),
"downloads": (
most_liked_dataset.get("downloads", 0) if most_liked_dataset else 0
),
},
"Top Space": {
"name": (
most_liked_space.get("id", "None") if most_liked_space else "None"
),
"likes": most_liked_space.get("likes", 0) if most_liked_space else 0,
},
},
}
# Generate image URL
image_url = create_image(stats, username)
return image_url
with gr.Blocks(title="Hugging Face Community Stats") as demo:
gr.Markdown("# Hugging Face Community Recap")
gr.Markdown(
"Enter a username to see their impact and top contributions across the Hugging Face Hub"
)
with gr.Row():
username_input = gr.Textbox(
label="Hub username",
placeholder="Enter Hugging Face username...",
scale=6,
value="bartowski",
)
submit_btn = gr.Button("Get Stats", scale=6)
with gr.Row():
# Add example usernames
gr.Examples(
examples=[
["merve"],
["mlabonne"],
["bartowski"],
["huggingface"],
["cfahlgren1"],
["argilla"],
],
inputs=username_input,
label="Try these examples",
)
with gr.Row():
with gr.Column():
stats_image = gr.Markdown(f"![Hugging Face Stats]({DEFAULT_IMAGE})")
def format_markdown(image_url):
return f"![Hugging Face Stats]({image_url}) \n\n * *Downloads are for the last 30 days, likes are for 2024*"
# Handle submission
submit_btn.click(
fn=lambda x: format_markdown(get_user_stats(x)),
inputs=username_input,
outputs=stats_image,
api_name="get_stats",
)
# Also trigger on enter key
username_input.submit(
fn=lambda x: format_markdown(get_user_stats(x)),
inputs=username_input,
outputs=stats_image,
)
if __name__ == "__main__":
demo.launch()