File size: 7,477 Bytes
6b07e4a
 
 
 
fab0ae1
6b07e4a
 
 
fab0ae1
 
6b07e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fab0ae1
 
 
 
 
 
 
6b07e4a
 
 
 
 
 
 
 
 
fab0ae1
 
 
 
 
 
6b07e4a
 
 
 
 
 
 
fab0ae1
 
 
 
 
 
6b07e4a
 
 
 
 
 
 
fab0ae1
 
 
 
 
 
 
 
6b07e4a
 
 
 
 
 
fab0ae1
6b07e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fab0ae1
 
 
 
6b07e4a
fab0ae1
6b07e4a
 
 
fab0ae1
 
 
6b07e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import requests
import gradio as gr
from urllib.parse import urlencode
import os
from datetime import datetime

# Load environment variables

DEFAULT_IMAGE = "https://argilla.imglab-cdn.net/dibt/dibt_v2.png?width=1200&text=%3Cspan+size%3D%2212pt%22+weight%3D%22bold%22%3EHugging+Face++%E2%9D%A4%EF%B8%8F+bartowski+in+2024%3C%2Fspan%3E%0A%0A%3Cspan+weight%3D%22bold%22%3E3%2C057%2C452%3C%2Fspan%3E+model+downloads%0A%3Cspan+weight%3D%22bold%22%3E5%2C404%3C%2Fspan%3E+model+likes%0A%3Cspan+weight%3D%22bold%22%3E0%3C%2Fspan%3E+dataset+downloads%0A%3Cspan+weight%3D%22bold%22%3E0%3C%2Fspan%3E+dataset+likes%0A%0A%3Cspan+size%3D%2210pt%22%3EMost+Popular+Contributions%3A%3C%2Fspan%3E%0AModel%3A+%3Cspan+weight%3D%22bold%22%3Ebartowski%2Fgemma-2-9b-it-GGUF%3C%2Fspan%3E%0A++%2844%2C256+downloads%2C+196+likes%29%0ADataset%3A+%3Cspan+weight%3D%22bold%22%3ENone%3C%2Fspan%3E%0A++%280+downloads%2C+0+likes%29%0ASpace%3A+%3Cspan+weight%3D%22bold%22%3Ebartowski%2Fgguf-metadata-updater%3C%2Fspan%3E%0A++%287+likes%29&text-width=800&text-height=600&text-padding=60&text-color=39%2C71%2C111&text-x=460&text-y=40&format=png&dpr=2"


def create_image(stats, username):
    url = "https://argilla.imglab-cdn.net/dibt/dibt_v2.png"

    total_stats = stats["Total Statistics"]
    top_items = stats["Most Popular Items"]

    text = f"""<span size="12pt" weight="bold">Hugging Face  ❤️ {username} in 2024</span>

<span weight="bold">{total_stats['Model Downloads']:,}</span> model downloads
<span weight="bold">{total_stats['Model Likes']:,}</span> model likes
<span weight="bold">{total_stats['Dataset Downloads']:,}</span> dataset downloads
<span weight="bold">{total_stats['Dataset Likes']:,}</span> dataset likes

<span size="10pt">Most Popular Contributions:</span>
Model: <span weight="bold">{top_items['Top Model']['name']}</span>
  ({top_items['Top Model']['downloads']:,} downloads, {top_items['Top Model']['likes']} likes)
Dataset: <span weight="bold">{top_items['Top Dataset']['name']}</span>
  ({top_items['Top Dataset']['downloads']:,} downloads, {top_items['Top Dataset']['likes']} likes)
Space: <span weight="bold">{top_items['Top Space']['name']}</span>
  ({top_items['Top Space']['likes']} likes)"""

    params = {
        "width": "1200",
        "text": text,
        "text-width": "800",
        "text-height": "600",
        "text-padding": "60",
        "text-color": "39,71,111",
        "text-x": "460",
        "text-y": "40",
        "format": "png",
        "dpr": "2",
    }

    return f"{url}?{urlencode(params)}"


def is_from_2024(created_at_str):
    if not created_at_str:
        return False
    created_at = datetime.strptime(created_at_str, "%Y-%m-%dT%H:%M:%S.%fZ")
    return created_at.year == 2024


def get_user_stats(username):
    headers = {"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"}

    # Get models stats
    models_response = requests.get(
        "https://huggingface.co/api/models",
        params={"author": username, "full": "True"},
        headers=headers,
    )
    # Filter for 2024 models only
    models = [
        model
        for model in models_response.json()
        if is_from_2024(model.get("createdAt"))
    ]

    # Get datasets stats
    datasets_response = requests.get(
        "https://huggingface.co/api/datasets",
        params={"author": username, "full": "True"},
        headers=headers,
    )
    # Filter for 2024 datasets only
    datasets = [
        dataset
        for dataset in datasets_response.json()
        if is_from_2024(dataset.get("createdAt"))
    ]

    # Get spaces stats
    spaces_response = requests.get(
        "https://huggingface.co/api/spaces",
        params={"author": username, "full": "True"},
        headers=headers,
    )
    # Filter for 2024 spaces only
    spaces = [
        space
        for space in spaces_response.json()
        if is_from_2024(space.get("createdAt"))
    ]

    # Calculate totals for 2024 items only
    total_model_downloads = sum(model.get("downloads", 0) for model in models)
    total_model_likes = sum(model.get("likes", 0) for model in models)
    total_dataset_downloads = sum(dataset.get("downloads", 0) for dataset in datasets)
    total_dataset_likes = sum(dataset.get("likes", 0) for dataset in datasets)
    total_space_likes = sum(space.get("likes", 0) for space in spaces)

    # Find most liked items from 2024
    most_liked_model = max(models, key=lambda x: x.get("likes", 0), default=None)
    most_liked_dataset = max(datasets, key=lambda x: x.get("likes", 0), default=None)
    most_liked_space = max(spaces, key=lambda x: x.get("likes", 0), default=None)

    stats = {
        "Total Statistics": {
            "Model Downloads": total_model_downloads,
            "Model Likes": total_model_likes,
            "Dataset Downloads": total_dataset_downloads,
            "Dataset Likes": total_dataset_likes,
            "Space Likes": total_space_likes,
        },
        "Most Popular Items": {
            "Top Model": {
                "name": most_liked_model.get("modelId", "None")
                if most_liked_model
                else "None",
                "likes": most_liked_model.get("likes", 0) if most_liked_model else 0,
                "downloads": most_liked_model.get("downloads", 0)
                if most_liked_model
                else 0,
            },
            "Top Dataset": {
                "name": most_liked_dataset.get("id", "None")
                if most_liked_dataset
                else "None",
                "likes": most_liked_dataset.get("likes", 0)
                if most_liked_dataset
                else 0,
                "downloads": most_liked_dataset.get("downloads", 0)
                if most_liked_dataset
                else 0,
            },
            "Top Space": {
                "name": most_liked_space.get("id", "None")
                if most_liked_space
                else "None",
                "likes": most_liked_space.get("likes", 0) if most_liked_space else 0,
            },
        },
    }

    # Generate image URL
    image_url = create_image(stats, username)

    return image_url


with gr.Blocks(title="Hugging Face Community Stats") as demo:
    gr.Markdown("# Hugging Face Community Recap")
    gr.Markdown(
        "Enter a username to see their impact and top contributions across the Hugging Face Hub"
    )

    with gr.Row():
        username_input = gr.Textbox(
            label="Hub username",
            placeholder="Enter Hugging Face username...",
            scale=6,
            value="bartowski",
        )
        submit_btn = gr.Button("Get Stats", scale=6)

    with gr.Row():
        with gr.Column():
            stats_image = gr.Markdown(
                f"![Hugging Face Stats]({DEFAULT_IMAGE})"
            )

    # Add example usernames
    gr.Examples(
        examples=[["merve"], ["mlabonne"], ["bartowski"]],
        inputs=username_input,
        label="Try these examples",
    )

    def format_markdown(image_url):
        return f"![Hugging Face Stats]({image_url})"

    # Handle submission
    submit_btn.click(
        fn=lambda x: format_markdown(get_user_stats(x)),
        inputs=username_input,
        outputs=stats_image,
        api_name="get_stats",
    )
    # Also trigger on enter key
    username_input.submit(
        fn=lambda x: format_markdown(get_user_stats(x)),
        inputs=username_input,
        outputs=stats_image,
    )

if __name__ == "__main__":
    demo.launch()