File size: 5,726 Bytes
6b07e4a
 
 
326d760
6b07e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24869d6
6b07e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import requests
import gradio as gr
from urllib.parse import urlencode

import os

# Load environment variables


def create_image(stats, username):
    url = "https://argilla.imglab-cdn.net/dibt/dibt_v2.png"

    total_stats = stats["Total Statistics"]
    top_items = stats["Most Popular Items"]

    text = f"""<span size="12pt" weight="bold">Hugging Face  ❤️ {username} in 2024</span>

<span weight="bold">{total_stats['Model Downloads']:,}</span> model downloads
<span weight="bold">{total_stats['Model Likes']:,}</span> model likes
<span weight="bold">{total_stats['Dataset Downloads']:,}</span> dataset downloads
<span weight="bold">{total_stats['Dataset Likes']:,}</span> dataset likes

<span size="10pt">Most Popular Contributions:</span>
Model: <span weight="bold">{top_items['Top Model']['name']}</span>
  ({top_items['Top Model']['downloads']:,} downloads, {top_items['Top Model']['likes']} likes)
Dataset: <span weight="bold">{top_items['Top Dataset']['name']}</span>
  ({top_items['Top Dataset']['downloads']:,} downloads, {top_items['Top Dataset']['likes']} likes)
Space: <span weight="bold">{top_items['Top Space']['name']}</span>
  ({top_items['Top Space']['likes']} likes)"""

    params = {
        "width": "1200",
        "text": text,
        "text-width": "800",
        "text-height": "600",
        "text-padding": "60",
        "text-color": "39,71,111",
        "text-x": "460",
        "text-y": "40",
        "format": "png",
        "dpr": "2",
    }

    return f"{url}?{urlencode(params)}"


def get_user_stats(username):
    headers = {"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"}

    # Get models stats
    models_response = requests.get(
        "https://huggingface.co/api/models",
        params={"author": username, "full": "True"},
        headers=headers,
    )
    models = models_response.json()

    # Get datasets stats
    datasets_response = requests.get(
        "https://huggingface.co/api/datasets",
        params={"author": username, "full": "True"},
        headers=headers,
    )
    datasets = datasets_response.json()

    # Get spaces stats
    spaces_response = requests.get(
        "https://huggingface.co/api/spaces",
        params={"author": username, "full": "True"},
        headers=headers,
    )
    spaces = spaces_response.json()

    # Calculate totals
    total_model_downloads = sum(model.get("downloads", 0) for model in models)
    total_model_likes = sum(model.get("likes", 0) for model in models)
    total_dataset_downloads = sum(dataset.get("downloads", 0) for dataset in datasets)
    total_dataset_likes = sum(dataset.get("likes", 0) for dataset in datasets)
    total_space_likes = sum(space.get("likes", 0) for space in spaces)

    # Find most liked items
    most_liked_model = max(models, key=lambda x: x.get("likes", 0), default=None)
    most_liked_dataset = max(datasets, key=lambda x: x.get("likes", 0), default=None)
    most_liked_space = max(spaces, key=lambda x: x.get("likes", 0), default=None)

    stats = {
        "Total Statistics": {
            "Model Downloads": total_model_downloads,
            "Model Likes": total_model_likes,
            "Dataset Downloads": total_dataset_downloads,
            "Dataset Likes": total_dataset_likes,
            "Space Likes": total_space_likes,
        },
        "Most Popular Items": {
            "Top Model": {
                "name": most_liked_model.get("modelId", "None")
                if most_liked_model
                else "None",
                "likes": most_liked_model.get("likes", 0) if most_liked_model else 0,
                "downloads": most_liked_model.get("downloads", 0)
                if most_liked_model
                else 0,
            },
            "Top Dataset": {
                "name": most_liked_dataset.get("id", "None")
                if most_liked_dataset
                else "None",
                "likes": most_liked_dataset.get("likes", 0)
                if most_liked_dataset
                else 0,
                "downloads": most_liked_dataset.get("downloads", 0)
                if most_liked_dataset
                else 0,
            },
            "Top Space": {
                "name": most_liked_space.get("id", "None")
                if most_liked_space
                else "None",
                "likes": most_liked_space.get("likes", 0) if most_liked_space else 0,
            },
        },
    }

    # Generate image URL
    image_url = create_image(stats, username)

    return image_url


with gr.Blocks(title="Hugging Face Community Stats") as demo:
    gr.Markdown("# Hugging Face Community Recap")
    gr.Markdown(
        "Enter a username to see their impact and top contributions across the Hugging Face Hub"
    )

    with gr.Row():
        username_input = gr.Textbox(
            label=None, placeholder="Enter Hugging Face username...", scale=4
        )
        submit_btn = gr.Button("Get Stats", scale=1)

    with gr.Row():
        with gr.Column():
            stats_image = gr.Markdown()

    # Add example usernames
    gr.Examples(
        examples=[["merve"], ["mlabonne"], ["bartowski"]],
        inputs=username_input,
        label="Try these examples",
    )

    def format_markdown(image_url):
        return f"![Hugging Face Stats]({image_url})"

    # Handle submission
    submit_btn.click(
        fn=lambda x: format_markdown(get_user_stats(x)),
        inputs=username_input,
        outputs=stats_image,
        api_name="get_stats",
    )
    # Also trigger on enter key
    username_input.submit(
        fn=lambda x: format_markdown(get_user_stats(x)),
        inputs=username_input,
        outputs=stats_image,
    )

if __name__ == "__main__":
    demo.launch()