import torch from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration, BitsAndBytesConfig # Load model and processor device = "cuda" if torch.cuda.is_available() else "cpu" quantization_config = BitsAndBytesConfig(load_in_8bit=True) processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl") model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-flan-t5-xl", device_map="auto" ) def get_image_answer(image: Image.Image, question: str) -> str: if image.mode != "RGB": image = image.convert("RGB") inputs = processor(images=image, text=question, return_tensors="pt") for key in inputs: if inputs[key].dtype in [torch.float32, torch.float64]: # Cast only float tensors (like pixel values) to float16 if on CUDA inputs[key] = inputs[key].to(device, torch.float16 if device == "cuda" else torch.float32) else: # Leave token inputs (e.g., input_ids) as integers inputs[key] = inputs[key].to(device) print("Prompt Passed to VLM:", f"Question: {question} Answer:") output_ids = model.generate(**inputs) answer = processor.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip() print("Model Response:", answer) return answer