Spaces:
Runtime error
Runtime error
File size: 2,719 Bytes
1c701d2 96f001c 2acc877 1c701d2 96f001c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import random
# Model path (relative to the Space root)
MODEL_PATH = "./emoji_deepseekmath-r1"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH).to("cuda" if torch.cuda.is_available() else "cpu")
def emojiq_brainpower():
logic = random.randint(40, 100)
emoji_confusion = 100 - logic
caffeine = random.randint(10, 50)
return (
f"π§ {logic}% logic, {emoji_confusion}% 'Wait... is π a number?!' π€, "
f"and {caffeine}% caffeine boost βπ"
)
def solve_emoji_math(problem, temperature, max_length, top_p):
if not problem.strip():
return "β οΈ Please enter an emoji math problem to solve.", ""
prompt = f"Solve: {problem}\nAnswer:"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
top_p=top_p,
do_sample=True
)
solution = tokenizer.decode(outputs[0], skip_special_tokens=True)
solved_text = solution.split("Answer:")[-1].strip()
brainpower = emojiq_brainpower()
return f"β
Solution: **{solved_text}**", brainpower
with gr.Blocks(title="EmojIQ - Emoji Math Solver") as interface:
gr.Markdown("# π’ EmojIQ: Emoji Math Solver")
gr.Markdown("### Cracking Emoji Codes, Solving Math with a Smile! πβπ")
gr.Markdown("Enter an emoji math problem, and let EmojIQ solve it! π€")
problem_input = gr.Textbox(
label="π Emoji Math Problem",
placeholder="e.g., π + π + π = 12",
lines=3
)
with gr.Row():
with gr.Column():
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature (0 = logical, 1 = creative)")
max_length = gr.Slider(50, 200, value=100, step=10, label="Max Output Length")
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p (sampling diversity)")
solution_output = gr.Textbox(label="Solution", interactive=False)
brainpower_output = gr.Textbox(label="EmojIQ Brainpower", interactive=False)
solve_button = gr.Button("π Solve Emoji Math")
solve_button.click(
fn=solve_emoji_math,
inputs=[problem_input, temperature, max_length, top_p],
outputs=[solution_output, brainpower_output]
)
gr.Markdown("---")
gr.Markdown("π’ **EmojIQ** - Cracking Emoji Codes, One Equation at a Time! π")
interface.launch() |