File size: 4,028 Bytes
e573d3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
import faiss
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import google.generativeai as genai
import re
import os

# Load data and FAISS index
def load_data_and_index():
    docs_df = pd.read_pickle("docs_with_embeddings (1).pkl")  # Adjust path for HF Spaces
    embeddings = np.array(docs_df['embeddings'].tolist(), dtype=np.float32)
    dimension = embeddings.shape[1]
    index = faiss.IndexFlatL2(dimension)
    index.add(embeddings)
    return docs_df, index

docs_df, index = load_data_and_index()

# Load SentenceTransformer
minilm = SentenceTransformer('all-MiniLM-L6-v2')

# Configure Gemini API using Hugging Face Secrets
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
if not GEMINI_API_KEY:
    raise ValueError("Gemini API key not found. Please set it in Hugging Face Spaces secrets.")
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-2.0-flash')

# Preprocess text function
def preprocess_text(text):
    text = text.lower()
    text = text.replace('\n', ' ').replace('\t', ' ')
    text = re.sub(r'[^\w\s.,;:>-]', ' ', text)
    text = ' '.join(text.split()).strip()
    return text

# Retrieve documents
def retrieve_docs(query, k=5):
    query_embedding = minilm.encode([query], show_progress_bar=False)[0].astype(np.float32)
    distances, indices = index.search(np.array([query_embedding]), k)
    retrieved_docs = docs_df.iloc[indices[0]][['label', 'text', 'source']]
    retrieved_docs['distance'] = distances[0]
    return retrieved_docs

# RAG pipeline integrated into respond function
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,  # Keeping top_p as an input, though Gemini doesn’t use it directly
):
    # Preprocess the user message
    preprocessed_query = preprocess_text(message)
    
    # Retrieve relevant documents
    retrieved_docs = retrieve_docs(preprocessed_query, k=5)
    context = "\n".join(retrieved_docs['text'].tolist())
    
    # Construct the prompt with system message, history, and RAG context
    prompt = f"{system_message}\n\n"
    for user_msg, assistant_msg in history:
        if user_msg:
            prompt += f"User: {user_msg}\n"
        if assistant_msg:
            prompt += f"Assistant: {assistant_msg}\n"
    prompt += (
        f"Query: {message}\n"
        f"Relevant Context: {context}\n"
        f"Generate a short, concise, and to-the-point response to the query based only on the provided context."
    )
    
    # Generate response with Gemini
    response = model.generate_content(
        prompt,
        generation_config=genai.types.GenerationConfig(
            max_output_tokens=max_tokens,
            temperature=temperature
        )
    )
    answer = response.text.strip()
    if not answer.endswith('.'):
        last_period = answer.rfind('.')
        if last_period != -1:
            answer = answer[:last_period + 1]
        else:
            answer += "."
    
    # Yield the full response (no streaming, as Gemini API doesn’t support it here)
    yield answer

# Gradio Chat Interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(
            value="You are a medical AI assistant diagnosing patients based on their query, using relevant context from past records of other patients.",
            label="System message"
        ),
        gr.Slider(minimum=1, maximum=2048, value=150, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.75, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",  # Included but not used by Gemini
        ),
    ],
    title="🏥 Medical Chat Assistant",
    description="A chat-based medical assistant that diagnoses patient queries using AI and past records."
)

if __name__ == "__main__":
    demo.launch()