File size: 3,777 Bytes
e573d3e
 
 
 
 
 
 
 
 
 
 
ed8c0cb
e573d3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914eefe
e573d3e
 
 
 
 
 
 
914eefe
e573d3e
 
 
 
 
 
 
914eefe
ee32f79
914eefe
e573d3e
 
914eefe
 
 
 
 
e573d3e
 
 
 
5574a92
e573d3e
914eefe
 
e573d3e
 
 
 
 
 
 
 
5574a92
 
 
 
 
 
e573d3e
914eefe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee32f79
 
 
5574a92
e573d3e
 
ee32f79
e573d3e
ee32f79
e573d3e
914eefe
e573d3e
914eefe
5574a92
 
e573d3e
 
 
914eefe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr
import faiss
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import google.generativeai as genai
import re
import os

# Load data and FAISS index
def load_data_and_index():
    docs_df = pd.read_pickle("data.pkl")  # Adjust path for HF Spaces
    embeddings = np.array(docs_df['embeddings'].tolist(), dtype=np.float32)
    dimension = embeddings.shape[1]
    index = faiss.IndexFlatL2(dimension)
    index.add(embeddings)
    return docs_df, index

docs_df, index = load_data_and_index()

# Load SentenceTransformer
minilm = SentenceTransformer('all-MiniLM-L6-v2')

# Configure Gemini API using Hugging Face Secrets
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
if not GEMINI_API_KEY:
    raise ValueError("Gemini API key not found. Please set it in Hugging Face Spaces secrets.")
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-2.0-flash')

# Preprocess text
def preprocess_text(text):
    text = text.lower()
    text = text.replace('\n', ' ').replace('\t', ' ')
    text = re.sub(r'[^\w\s.,;:>-]', ' ', text)
    text = ' '.join(text.split()).strip()
    return text

# Retrieve top-k documents
def retrieve_docs(query, k=5):
    query_embedding = minilm.encode([query], show_progress_bar=False)[0].astype(np.float32)
    distances, indices = index.search(np.array([query_embedding]), k)
    retrieved_docs = docs_df.iloc[indices[0]][['label', 'text', 'source']]
    retrieved_docs['distance'] = distances[0]
    return retrieved_docs

# Generate structured response
def respond(message, system_message, max_tokens, temperature, top_p):
    # Preprocess and retrieve
    preprocessed_query = preprocess_text(message)
    retrieved_docs = retrieve_docs(preprocessed_query, k=5)

    # Combine retrieved texts
    context = "\n".join([f"- *{row['label']}* ({row['source']}): {row['text']}" for _, row in retrieved_docs.iterrows()])

    # Build prompt
    prompt = f"{system_message}\n\n"
    prompt += (
        f"Query: {message}\n"
        f"Relevant Context: {context}\n"
        f"Generate a short, concise, and to-the-point response to the query based only on the provided context."
    )

    # Get Gemini response
    response = model.generate_content(
        prompt,
        generation_config=genai.types.GenerationConfig(
            max_output_tokens=max_tokens,
            temperature=temperature
        )
    )
    answer = response.text.strip()
    if not answer.endswith('.'):
        last_period = answer.rfind('.')
        if last_period != -1:
            answer = answer[:last_period + 1]
        else:
            answer += "."

    # Format output with Markdown
    formatted_answer = f"""
**🩺 Patient Query:**  
{message}

---

**πŸ“š Retrieved Context:**  
{context}

---

**🧠 Diagnosis / Suggestion:**  
{answer}
"""

    return formatted_answer.strip()

# Gradio app
demo = gr.Interface(
    fn=respond,
    inputs=[
        gr.Textbox(label="Your Query", placeholder="Enter your medical question here..."),
        gr.Textbox(
            value="You are a medical AI assistant diagnosing patients based on their query, using relevant context from past records of other patients.",
            label="System Message"
        ),
        gr.Slider(minimum=1, maximum=2048, value=150, step=1, label="Max New Tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.75, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
    outputs=gr.Markdown(label="Diagnosis"),
    title="πŸ₯ Medical Assistant",
    description="A simple medical assistant that diagnoses patient queries using AI and past records."
)

if __name__ == "__main__":
    demo.launch()